Verifying Terai's freeness conjecture for small arrangements in arbitrary characteristic

Feburory 17, 2021 (9) ICERM
Lukas Kühne
Max Planck Institute for Mathematics in the Sciences Leipzig

Joint work with Mohamed Barakat, Reimer Behrends, Christopher Jefferson, and Martin Leuner

DEFINITIONS

- A arrangement of hyperplanes in V over \mathbb{F} with equations α_{H} for $H_{G} A$.
- The module of logarithmic derivations $D(4)$ is defined as $D(\not))=\left\{\theta \in \operatorname{Der} S \mid \theta\left(\alpha_{H}\right) \in\left\langle\alpha_{H}\right\rangle_{S} \forall H \in\{ \}\right.$.
Where $S=\mathbb{F}\left[x_{1}, \cdots, x_{e}\right] \quad(\operatorname{dim} V=l)$
A is called free if $O(A)$
is a free S-module
- The intersection lattice $L(\mathbb{X})$ is $L(A)=\left\{\bigcap_{H \in S} H \mid B \subseteq A\right\}$.

EXAMPLE

The Braid arrangement A_{3}

$$
\begin{aligned}
& x, y, z, x-y \\
& x-z, y-z
\end{aligned}
$$

A_{3} is free:

$$
\begin{aligned}
& \theta_{1}=x \delta_{x}+y \delta_{y}+z \delta_{z} \\
& \theta_{2}=x^{2} \delta_{x}+y^{2} \delta_{y}+z \delta_{z} \\
& \theta_{3}=x^{3} \delta_{x}+y^{3} \delta_{y}+z^{3} \delta_{z}
\end{aligned}
$$

CONJECTURE (Terai)
If A, B are arrangements over \mathbb{F} with $\angle(A) \simeq \angle(B)$ then
A is free $\Leftrightarrow S$ is free

matroid. mathematik. uni-siegen. de

THEOREM (B B子KL'19, Barakat, K. '21+)
Terai's conjecture holds for arrangements of size up to 14 and rank 3 in arbitrary characteristic

User: matroid Password: matroid

Sage experimentation with stable Grothendieck polynomials
arXiv: 1911.08732
The Electronic Journal of Combinatorics 27(2) (2020), \#P2.29

Joint with Jennifer Morse, Wencin Poh and Anne Schilling

Sage/Oscar Days for Combinatorial Algebraic Geometry, ICERM Feburary 17, 2021

- (31)(32)() $\quad G_{132}(\mathbf{x}, \beta)=s_{21}+\beta\left(2 s_{211}+s_{22}\right)+\beta^{2}\left(3 s_{2111}+2 s_{221}\right)+\cdots$
- (31)(1)(2)
- (31)(2)(2)
- (31)(3)(2)
- (1)(31)(2)
- (1)(32)(2)
- (3)(31)(2)
- (31)()(32)
- (1)(1)(32)
- (1)(3)(32)
- (3)(1)(32)
- ()(31)(32)

Deformation classes of bitangents to tropical quartic curves
Marta Panizzut (TU Berlin) jww Alheydis Geiger Sage/Oscar Days - February 17, 2021

Tropical smooth plane quartic curve dual to the regular unimodular triangulation \mathcal{T} of $4 \Delta_{2}$

Γ has infinitely many bitangent tropical
lines grouped into seven bitangent classes.
These classes are encoded by subcomplexes of $\boldsymbol{\tau}$ described by Cueto and Markwig ' 20.

Our starting points:

- regular unimodular triangulations of $4 \Delta_{2}$

Brodsky, Joswig. Morrison and Sturmfels '15

- bitangent classes and real lifting conditions cucto and Marknig '20.
Current work:
- Enumeration of (deformations of) bitangent classes
- Hyperplane arrangements induced by bitangent classes
- Real lifting conditions

Variational GIT for Complete Intersections and a Hyperplane Section via Sage

Papazachariou Theodoros Stylianos

15 February 2021

Some Background on (Variational) GIT

■ Main goal: describe quotients of (projective) varieties X with (reductive) group actions, with respect to some G-linearization \mathcal{L}.

- If $\operatorname{Pic}(X)^{G}=\mathbb{Z}^{2}$, the (categorical quotient)
$X / / \mathcal{L} G:=\operatorname{Proj} \bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{L}^{\otimes m}\right)^{G}$ depends on $\mathcal{L}=\mathcal{O}(a, b)$. If $x \in X / / \mathcal{L} G$ we say x is a semi-stable point. We also have a finite wall-chamber decomposition $\left[t_{i}, t_{i+1}\right]$, where stability conditions are the same for each wall/chamber, $t_{i}=\frac{b_{i}}{a_{i}}$.
- We also have a moduli space $\overline{\mathcal{M}}^{\text {GIT }}$ where the points are stable. We find stable/semi-stable points via the Hilbert-Mumford numerical criterion.
- The action of G on X induces an action of \mathbb{G}_{m} on X via one-parameter subgroups, $\lambda: \mathbb{G}_{m} \rightarrow G$, via $x \rightarrow \lambda(t) \cdot x, t \in \mathbb{G}_{m}$.
- For all $\lambda, \mathrm{H}-\mathrm{M}$ function $\mu_{t}(X, \lambda) \geq 0$ (>0 resp.) for (semi)-stable points. If X is a Hilbert scheme parametrising hypersurfaces, μ_{t} depends on monomials of a specific degree.

Complete Intersections and Hyperplane Section

■ We study pairs $X=\left\{f_{1}=\cdots=f_{k}=0\right\} \subset \mathbb{P}^{n}, H$ a hyperplane, parametrized by their Hilbert scheme \mathcal{R} where $\operatorname{Pic}(\mathcal{R})^{G}=\mathbb{Z}^{2}$, $G=\operatorname{SL}(n+1)$.
■ Can find an explicit finite set $P_{n, k, d}$ of 1-PS that is maximal with respect to unstable and non-stable points. This is achieved by solving a number of linear systems dependent on the n, k, d on Sage. Using this, we can find all walls and chambers $\left[t_{i}, t_{i+1}\right.$] by solving a number of equations dependant on the monomials of degree d and 1 .
■ We also compute finite sets $N_{t}^{\ominus}(\lambda)$ for $\lambda \in P_{n, k, d}, N_{t}^{-}(\lambda)$, that parametrise non-stable/unstable pairs. This is achieved by testing the H-M function for each t for all λ with some constraints on the monomials.

- Constraints: as n, k, d increase the program becomes computationally overloaded and slows down.

Matrix Schubert varieties and CM regularity

Colleen Robichaux University of Illinois at Urbana-Champaign

joint work with Jenna Rajchgot and Anna Weigandt
Introductory Workshop: Combinatorial Algebraic Geometry Lightning Talks February 17, 2021

Matrix Schubert varieties and CM regularity

Matrix Schubert varieties \bar{X}_{w}, where $w \in S_{n}$, are generalized determinantal varieties. To study \bar{X}_{w} we can consider the algebraic invariant of $\mathbf{C M}$ regularity $\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)$.

Theorem

$$
\operatorname{reg}\left(\mathbb{C}\left[\bar{X}_{w}\right]\right)=\operatorname{deg} \mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)-\ell(w)
$$

Problem

Give an easily computable formula for $\operatorname{deg} \mathfrak{G}_{w}\left(x_{1}, \ldots, x_{n}\right)$.

Finding the degree of \mathfrak{G}_{v} vexillary

Theorem [Rajchgot-R.-Weigandt '21+]

Suppose $v \in S_{n}$ vexillary. Then

$$
\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+\sum_{i=1}^{n} \sum_{\mu \in \operatorname{comp}\left(\left.\lambda(v)\right|_{\geq i}\right)} \operatorname{sv}(\mu) .
$$

Example: $v=5713624$

gives $\operatorname{deg}\left(\mathfrak{G}_{v}\right)=\ell(v)+((2+1)+(1))=12+4=16$.

Bound Quivers of Exceptional Collections

$$
\mathbb{P}(1,2,3)=\operatorname{Proj}[a, b, c] \quad w=1+2+3=6
$$

Goali study $D^{6}(\mathbb{P}(1,2,3))$.

* Exceptional Collection

$$
\{O, O(1), O(2), O(3), O(4), O(5)\} \quad \Longrightarrow
$$

* Quiver of sections

* Tilting Bundle $T=\bigoplus_{i=0}^{w-1} O(i)$
* Path Algebra

$$
A=\mathbb{K} \mathbb{Q} / \mathbb{R} \cong \operatorname{End}(T)
$$

Thu (Bondal '89) $D^{6}(\mathbb{P}(1,2,3))=D^{6}(\bmod -A)$

Resolution of the Diagonal, the Hochschild way

$$
\begin{gathered}
\{5,-5\} \\
\{4,-4\} \\
\{3,-3\} \\
\{2,-2\} \\
\{1,-1\} \\
\{0,0\}
\end{gathered}\left(\begin{array}{cccccccccccc}
a & b & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-x & 0 & 0 & a & b & c & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -y & 0 & -x & 0 & 0 & a & b & c & 0 & 0 & 0 \\
0 & 0 & -z & 0 & -y & 0 & -x & 0 & 0 & a & b & 0 \\
0 & 0 & 0 & 0 & 0 & -z & 0 & -y & 0 & -x & 0 & a \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -z & 0 & -y & -x
\end{array}\right)
$$

A 'QUANTUM EQUALS CLASSICAL' THEOREM FOR N-POINTED GROMOV-WITTEN INVARIANTS OF DEGREE ONE

Weihong Xu
(Joint with Linda Chen, Angela Gibney, Lauren Heller, Elana Kalashnikov, and Hannah Larson)

A Good Old Example

Line $\Gamma \subset \mathbb{P}^{3}$ $q\left(p^{-1}(\Gamma)\right)$ Schubert divisor \square
$\square^{4}=2 \cdot \square=2 \cdot[$ point $]$
$\bar{M}_{0,1}\left(\mathbb{P}^{3}, 1\right) \xrightarrow{e v} \mathbb{P}^{3}$
$=\quad \downarrow$
$\bar{M}_{0,0}\left(\mathbb{P}^{3}, 1\right)$
$4 \cdot \operatorname{codim}(\Gamma)=\operatorname{dim}\left(\bar{M}_{0,4}\left(\mathbb{P}^{3}, 1\right)\right)$ The Gromov-Witten invariant $\int_{\bar{M}_{0,4}\left(\mathbb{P}^{3}, 1\right)} e v_{1}^{*}[\Gamma] \cdots e v_{4}^{*}[\Gamma]=2$

More Generally

$X=G / P$ flag variety
P maximal parabolic corresponding to a long simple root $e v_{i}: \bar{M}_{0, n}(X, 1) \rightarrow X$
Schubert varieties $\Gamma_{1}, \cdots, \Gamma_{n} \subset X, \sum_{i=1}^{n} \operatorname{codim}\left(\Gamma_{i}\right)=\operatorname{dim}\left(\bar{M}_{0, n}(X, 1)\right)$ Theorem The (n-pointed, genus 0, degree 1) Gromov-Witten Invariant

$$
\int_{\bar{M}_{0, n}(X, 1)} e v_{1}^{*}\left[\Gamma_{1}\right] \cdots e v_{n}^{*}\left[\Gamma_{n}\right]
$$

$=\#\left\{\right.$ line in X meeting $\left.g_{1} \Gamma_{1}, \cdots, g_{n} \Gamma_{n}\right\}$ for $g_{1}, \cdots, g_{n} \in G$ general
$=\int_{G / Q}\left[q\left(p^{-1}\left(\Gamma_{1}\right)\right)\right] \cdots\left[q\left(p^{-1}\left(\Gamma_{n}\right)\right)\right]$

$$
\begin{aligned}
G /(P \cap Q) \xrightarrow{p} G / P & \bar{M}_{0,1}(X, 1) \xrightarrow{e v} X \\
\quad= & \downarrow \\
\quad q / Q & \\
& \bar{M}_{0,0}(X, 1)
\end{aligned}
$$

Remarks: 1) $n=3$ case is known; 2) proof is independent of Lie type

