

Joint Work with Mohamed Barakat, Reimer Behrends, Christopher Jefferson, and Martin Leuner

DEFINITIONS • A arrangement of hyperplanes in V over F with equations or for He A. · The module of logarithmic derivations D(A) is defined as D(4)= { BEDer S | BEY)E < 43. where $S = \mathbb{F}[x_1, x_e]$ (dim $V = \ell$) A is called free if D(A) is a free S-module · The intersection buttice L(&) is $\angle (\mathbf{A}) = \{ \bigcap_{H \in \mathcal{S}} H \mid \mathcal{S} \in \mathcal{A} \}$

EXAMPLE The Braid

arrongement Az X, Y, Z, X-Y X-Z, Y-Z

A₃ is free: $\Theta_{1} = x \delta_{x} + y \delta_{y} + z \delta_{z}$ $\Theta_{z} = x^{2} \delta_{x} + y^{2} \delta_{y} + z \delta_{z}$ $\Theta_{3} = x^{3} \delta_{x} + y^{3} \delta_{y} + z^{3} \delta_{z}$

CONJECTURE (Terro) 31 A, 3 are arrangements over F with $L(A) \simeq L(B)$ then A is free <=> 55 is free

0	ArangoDB	Query: Check_Terao_14
		Editor Running Queries Slow Query History
*		
	GRAPHS	1 FOR d IN matroids_split_public
		2 FILTER d.Rank == 3 && 3 d.NumberOfAtoms == 14 &&
		4 d.IsRepresentable = true && 5 d.IsInductivelyFree == false && 6 d.IsStronglyBalanced == true && 7 d.IsUnguelyRepresentableOverZ == false 8 SORT d.NumberOfAtoms, d.Characteristic, d.DimensionOverZ DESC
	SUPPORT	
		9 REIURN { NumberOfAtoms : a.NumberOfAtoms, 10 Characteristic: d.Characteristic, 11 DimensionOverZ : d.DimensionOverZ,
	GET ENTERPRISE	12 CoordinateRingOfModuliSpace : d.CoordinateRingOfModuliSpace, 13 InequalitiesOfModuliSpace : d.InequalitiesOfModuliSpace, 14 Exponents: d.Exponents: 15 WultiplicityVector : d.MultiplicityVector,
		16 _key : dkey }
		Query III U elements O 929.446 ms

THEOREM (BBJKL' 19, Borakat, K. '21+) Terao's conjecture holds for arrangements of size up to 14 and rank 3 in arbitrary characteristic.

Matroid. mathematik. uni-siegen. de

User: matroid

Password: matroid

Sage experimentation with stable Grothendieck polynomials arXiv: 1911.08732 The Electronic Journal of Combinatorics 27(2) (2020), #P2.29

Joint with Jennifer Morse, Wencin Poh and Anne Schilling

Sage/Oscar Days for Combinatorial Algebraic Geometry, ICERM Feburary 17, 2021

- (3)(1)(32)
- (1)(3)(32)
- (1)(1)(32)
- (31)()(32)
- (3)(31)(2)
- (1)(32)(2)
- (1)(31)(2)
- (31)(3)(2)
- (31)(2)(2)
- (31)(1)(2)
- (31)(32)() $G_{132}(\mathbf{x},\beta) = s_{21} + \beta(2s_{211} + s_{22}) + \beta^2(3s_{2111} + 2s_{221}) + \cdots$

Deformation classes of bitangents to tropical quartic curves

Marta Panizzut (TU Berlin) jww Alkeydis Geiger

Sage/Oscar Days - February 17, 2021

 Γ has infinitely many bitangent tropical lines grouped into seven bitangent classes. These classes are encoded by subcomplexes of τ described by lueto and Markwig '20.

Our starting points: • regular unimodular triangulations of 4/2 Brodsky, Joswig, Morrison and Sturmfels 15 bitangent classes and real lifting conditions cueto and Markwig 20. Current work: • Enumeration of (deformations of) bitangent classes 602. · Hyperplane arrangements induced by bitangent classes · Computational proof of Plücker's Theorem: · Real lifting conditions Real smooth quartic rune has either 4, 8, 16 or 28 real bitangents. L polymake

Variational GIT for Complete Intersections and a Hyperplane Section via Sage

Papazachariou Theodoros Stylianos

15 February 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Some Background on (Variational) GIT

- Main goal: describe quotients of (projective) varieties X with (reductive) group actions, with respect to some G-linearization L.
- If $\operatorname{Pic}(X)^G = \mathbb{Z}^2$, the (categorical quotient) $X \not|\!/_{\mathcal{L}} G := \operatorname{Proj} \bigoplus_{m \ge 0} H^0(X, \mathcal{L}^{\otimes m})^G$ depends on $\mathcal{L} = \mathcal{O}(a, b)$. If $x \in X \not|\!/_{\mathcal{L}} G$ we say x is a semi-stable point. We also have a finite wall-chamber decomposition $[t_i, t_{i+1}]$, where stability conditions are the same for each wall/chamber, $t_i = \frac{b_i}{a_i}$.
- We also have a moduli space M^{GIT} where the points are stable. We find stable/semi-stable points via the Hilbert-Mumford numerical criterion.
- The action of G on X induces an action of 𝔅_m on X via one-parameter subgroups, λ: 𝔅_m → G, via x → λ(t) · x, t ∈ 𝔅_m.
- For all λ, H-M function µ_t(X, λ) ≥ 0 (> 0 resp.) for (semi)-stable points. If X is a Hilbert scheme parametrising hypersurfaces, µ_t depends on monomials of a specific degree.

Complete Intersections and Hyperplane Section

- We study pairs $X = \{f_1 = \cdots = f_k = 0\} \subset \mathbb{P}^n$, H a hyperplane, parametrized by their Hilbert scheme \mathcal{R} where $\text{Pic}(\mathcal{R})^G = \mathbb{Z}^2$, G = SL(n+1).
- Can find an explicit finite set P_{n,k,d} of 1-PS that is maximal with respect to unstable and non-stable points. This is achieved by solving a number of linear systems dependent on the n, k, d on Sage. Using this, we can find all walls and chambers [t_i, t_{i+1}] by solving a number of equations dependent on the monomials of degree d and 1.
- We also compute finite sets $N_t^{\ominus}(\lambda)$ for $\lambda \in P_{n,k,d}$, $N_t^{-}(\lambda)$, that parametrise non-stable/unstable pairs. This is achieved by testing the H-M function for each t for all λ with some constraints on the monomials.
- Constraints: as n, k, d increase the program becomes computationally overloaded and slows down.

Matrix Schubert varieties and CM regularity

Colleen Robichaux University of Illinois at Urbana-Champaign

joint work with Jenna Rajchgot and Anna Weigandt Introductory Workshop: Combinatorial Algebraic Geometry Lightning Talks February 17, 2021

- 4 同 ト 4 三 ト 4 三

Colleen Robichaux University of Illinois at Urbana-Champaign

Matrix Schubert varieties and CM regularity

Matrix Schubert varieties and CM regularity

Matrix Schubert varieties \overline{X}_w , where $w \in S_n$, are generalized determinantal varieties. To study \overline{X}_w we can consider the algebraic invariant of CM regularity $reg(\mathbb{C}[\overline{X}_w])$.

Theorem

$$\operatorname{reg}(\mathbb{C}[\overline{X}_w]) = \operatorname{deg} \mathfrak{G}_w(x_1,\ldots,x_n) - \ell(w).$$

イロト イボト イヨト イヨト

Problem

Give an easily computable formula for deg $\mathfrak{G}_w(x_1,\ldots,x_n)$.

Colleen Robichaux University of Illinois at Urbana-Champaign

Matrix Schubert varieties and CM regularity

Finding the degree of \mathfrak{G}_v vexillary

Theorem [Rajchgot-R.-Weigandt '21+]

Suppose $v \in S_n$ vexillary. Then

$$\deg(\mathfrak{G}_{\mathbf{v}}) = \ell(\mathbf{v}) + \sum_{i=1}^{n} \sum_{\mu \in \operatorname{comp}(\lambda(\mathbf{v})|_{\geq i})} \operatorname{sv}(\mu).$$

gives
$$\deg(\mathfrak{G}_v) = \ell(v) + ((2+1) + (1)) = 12 + 4 = 16.$$

Colleen Robichaux University of Illinois at Urbana-Champaign

Matrix Schubert varieties and CM regularity

Bound Quivers of Exceptional Collections

$$\begin{split} & \mathbb{P}(1,2,3) = \mathbb{P}(v_{0}) \begin{bmatrix} \alpha_{1}b_{1}c \end{bmatrix} \quad & \forall = 1+2+3=6 \\ \hline \\ & \mathbb{G}(ad_{1} \text{ study } \underline{D}^{b}(\underline{P}(1,2,3)) \\ & * \underbrace{\mathsf{Exceptional Collection}}_{\{0,0(1),0(2),0(3),0(4),0(5)\}} \quad & & \\ & \mathsf{T} = \underbrace{\bigoplus_{i=0}^{m} O(i)}_{i=0} \\ & \mathsf{C} = \underbrace{\bigoplus_{i=0}^{m} O(i)}_{i=0} \\ & \mathsf{C} = \underbrace{\bigoplus_{i=0}^{m} O(2)}_{i=0} \\ & \mathsf{$$

Resolution of the Diagonal, the Hochschild way

Mahrud Sayrafi, University of Minnesota, Twin Cities Exceptional Collections and the Quiver of Sections

A 'QUANTUM EQUALS CLASSICAL' THEOREM FOR N-POINTED GROMOV-WITTEN INVARIANTS OF DEGREE ONE

Weihong Xu (Joint with Linda Chen, Angela Gibney, Lauren Heller, Elana Kalashnikov, and Hannah Larson)

February, 2021

A Good Old Example

$$\begin{array}{c} Fl(1,2;4) & \xrightarrow{p} & \mathbb{P}^{3} \\ q \\ g \\ Gr(2,4) \end{array}$$

=

$$\overline{M}_{0,1}(\mathbb{P}^3, 1) \xrightarrow{ev} \mathbb{P}^3$$

$$\downarrow$$

$$\overline{M}_{0,0}(\mathbb{P}^3, 1)$$

Line $\Gamma \subset \mathbb{P}^3$ $q(p^{-1}(\Gamma))$ Schubert divisor \Box $\Box^4 = 2 \cdot \Box = 2 \cdot [\text{point}]$ $\begin{array}{l} 4 \cdot codim(\Gamma) = dim(\overline{M}_{0,4}(\mathbb{P}^3,1))\\ \text{The Gromov-Witten invariant}\\ \int_{\overline{M}_{0,4}(\mathbb{P}^3,1)} ev_1^*[\Gamma] \cdots ev_4^*[\Gamma] = 2 \end{array}$

More Generally

X = G/P flag variety P maximal parabolic corresponding to a long simple root $ev_i : \overline{M}_{0,n}(X, 1) \to X$ Schubert varieties $\Gamma_1, \dots, \Gamma_n \subset X$, $\sum_{i=1}^n codim(\Gamma_i) = dim(\overline{M}_{0,n}(X, 1))$ **Theorem** The (n-pointed, genus 0, degree 1) Gromov-Witten Invariant

$$\int_{\overline{M}_{0,n}(X,1)} ev_1^*[\Gamma_1] \cdots ev_n^*[\Gamma_n]$$

$$= \#\{\text{line in } X \text{ meeting } g_1\Gamma_1, \cdots, g_n\Gamma_n\} \text{ for } g_1, \cdots, g_n \in G \text{ general} \\ = \int_{G/Q} [q(p^{-1}(\Gamma_1))] \cdots [q(p^{-1}(\Gamma_n))]$$

$$\begin{array}{cccc} G/(P \cap Q) & \stackrel{p}{\longrightarrow} & G/P & \overline{M}_{0,1}(X,1) & \stackrel{ev}{\longrightarrow} & X \\ \downarrow & & & \downarrow \\ G/Q & & \overline{M}_{0,0}(X,1) \end{array}$$

Remarks: 1) n = 3 case is known; 2) proof is independent of Lie type