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What is 0SCAR?

http://oscar-system.org/

@ joint software project of the CRC TRR 195, funded by DFG
e written in Julia
e planned duration: 2017-2028, three phases
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@ beginning of 2nd phase: fully functional interoperability layer in Julia
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http://oscar-system.org/

julia

https://julialang.org/

open Source (MIT License)

JIT compilation: near C performance

supports Linux, BSD, MacOS, Windows

friendly C/Python-like (imperative) syntax
easy/efficient C interoperability; good C++ support
designed by mathematically minded people
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https://julialang.org/

Selected Julia Features

Julia is polymorphic:

gcd(a::Int, b::Int)
gcd(a::BigInt, b::Biglnt)
gcd(a::Poly{T}, b::Poly{T}) where {T <: Field}

Julia supports multimethods:

*(a::Int, b::Matrix{Int})
*(a::Matrix{Int}, b::Int)

Julia supports triangular dispatch (template parameter chaining):

*(x::T, y::8) where {T <: QuotientRing,
S <: Poly{T}}
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Example: Polytope From Group Orbit

= symmetric_group (4)

= [0,1,2,3]

Array(matrix(ZZ, [permuted(x,g) for g in G]))
= convex_hull (M)

TR M @
I

A Polyhedron of dimension 3
ambient_dim (P)
4

F = facets(P; as = :polyhedra)
n_vertices. (F)
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Example: Galois Groups

R, x =

PolynomialRing (QQ, "x")
number_field (x~5-2)

-
)
Il

G, C = galois_group (k)
roots (C, 1)

5-element Array{qadic,1}:
583730%1048589°0 + 0(10485897°1)
(333313%1048589°0 0(1048589"1))*a + 655516%1048589°0
(715276%1048589°0 0(1048589"1))*a + 576975%x1048589°0
(641808%1048589°0 0(1048589°1))%a + 419477%1048589°0
(406781%1048589°0 0(104858971))%a + 910069%x1048589°0

0(1048589°1)
0(1048589°1)
0(1048589°1)

+
+
+
+ 0(1048589°1)

+ o+ o+

describe (G)

"Cs5 : C4"
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Example: GIT-Fans with Symmetry

Let a be polynomial ideal, homogeneous with respect to the grading given
by (columns of) integer matrix Q. Consider the induced torus action on the
affine variety V(a).
@ Dolgachev and Hu (1998): GlIT-fan classifies all possible quotients (of
choices of open sets) in the sense of Mumford’s geometric invariant
theory in terms of a polyhedral fan.

For C*xC? —C2, t-(xy)=(tx,ty), Q=(1,1), a=0
U =C?
U> = C2\{0} ® ’
yielding as quotients a point and IP', respectively.
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GlIT-fan of affine cone over G(2,5) |

In the following, a = Pluecker ideal and Q = canonical grading matrix.

using GITFans

Q =[ ... 1; n= size(Q, 1)

Qt, T = PolynomialRing(QQ, :T => 1:n)
D = free_abelian_group(size(Q,2))

w = [D(Q[i, :]1) for i = 1:n]

R = grade(Qt, w)

a = ideal(R, [

T[5]*T[10] - T[6]1*T[9] + TI[7]1*TI[8],
TL11*T[9] - TI[21*T([7] + T[41*TI[5],
T[11*T[8] - T[2]xT[6] + T[31*TI[5],
TL[11*T[10] - T[31*T([7] + T[41*T[6],
T[2]*T[10] - T[31*T[9] + T[4]=TI[8],

1)
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GIT-fan of affine cone over G(2,5) |I

perms_list = [ [1,3,2,4,6,5,7,8,10,9],
[6,7,1,6,9,2,8,4,10,3] 1;

S10 = symmetric_group(n);

G, emb = sub([S10(x) for x in perms_list]...);

fanobj GITFans.git_fan(a, Q, G);
fanobj.F_VECTOR

pm::Vector<pm::Integer>

20 110 240 225 76

[@ J. Boehm, S. Keicher, Y. Ren. Computing GIT-fans with symmetry and
the Mori chamber decomposition of Mg . Math. Comp. (2020).
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GIT-fan of affine cone over G(2,5) IlI

Adjacency graph of GlT-cones of maximal dimension / of their orbits.
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Contributing to 0SCAR

http://oscar-system.org/

Comments and Feature Requests
@ join us on Slack
e send email to webmaster-oscar@mathematik.uni-kl.de for an invitation

@ consider subscribing to the oscar-dev mailing list

Contributing Code
@ write your own Julia package and contact us (see above)
@ fork on GitHub and submit pull request
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Example: JuLie by Uli Thiel (version 0.1 of Feb 03, 2021)

Algebraic Lie theory, representation theory, and relevant combinatorics

JuLie Documentation

About

© Using
© Motivation
© Developing

© Contributors
Combinatorics

Lie theory

Version  v0.1 v

Now, you can start using the package as follows:

julia> using Julie
julia> partitions(18)

You can get help for a function by putting a question mark in front, e.g.

julia> ?partitions

Motivation

Especially for combinatorics there's a lot already in other computer algebra systems and this justifies the question:
why another package? | will give 3 (interwoven) reasons:

1.1want to create a package that covers the mathematics that | especially care about in a way that | think about it.
One distant goal is to have all the material available from the book Introduction to Soergel bimodules with Elias,
Makisumi, and Williamson. It will take a lot of time and | don't know if | succeed but it's one motivation.

2.1 hope this package will eventually form one pillar of the OSCAR project.

3. What really convinced me of Julia as programming language—and thus of the whole enterprise—is its
straightforward high-level syntax (like Python) paired with incredible performance (unlike Python). Have a look
at the following examples creating the list (not an iterator) of all partitions of the integer 90 (there are ~56.6
million) in different computer algebra systems.

In Sage (v9.1):

sage: time X=Partitions(9@).list()
Wall time: 3min Ss

#Uses 26.665GiB mem, quitting Sage takes quite a bit of time

https://ulthiel.github.io/Julie.jl/stable/
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https://ulthiel.github.io/JuLie.jl/stable/

Concluding Remarks

@ 0SCAR v0.5.1 (Feb 12, 2021)
@ Juliavi1.5.3

@ try this demo at home:

@ https://github.com/micjoswig/oscar-notebooks/blob/
master/ICERM-210216/
e Julia Package Manager: activate / instantiate

@ contact us:

@ http://oscar-system.org
@ webmaster-oscar@mathematik.uni-kl.de
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