### **OSCAR: The Project**

#### Michael Joswig

TU Berlin & MPI-MiS Leipzig

... and the OSCAR Development Team

ICERM, Feb 16, 2021





### What is OSCAR?

#### http://oscar-system.org/

- joint software project of the CRC TRR 195, funded by DFG
  - written in Julia
  - planned duration: 2017–2028, three phases



• beginning of 2nd phase: fully functional interoperability layer in Julia



- open Source (MIT License)
- JIT compilation: near C performance
- supports Linux, BSD, MacOS, Windows
- friendly C/Python-like (imperative) syntax
- easy/efficient C interoperability; good C++ support
- designed by mathematically minded people

### Selected Julia Features

#### Julia is polymorphic:

```
gcd(a::Int, b::Int)
gcd(a::BigInt, b::BigInt)
gcd(a::Poly{T}, b::Poly{T}) where {T <: Field}</pre>
```

#### Julia supports multimethods:

```
*(a::Int, b::Matrix{Int})
*(a::Matrix{Int}, b::Int)
```

#### Julia supports triangular dispatch (template parameter chaining):

```
*(x::T, y::S) where {T <: QuotientRing,
S <: Poly{T}}
```

### **Example: Polytope From Group Orbit**

```
G = symmetric_group(4)
x = [0.1.2.3]
 = Array(matrix(ZZ, [permuted(x,g) for g in G]))
P = convex_hull(M)
A Polyhedron of dimension 3
ambient_dim(P)
F = facets(P; as = :polyhedra)
n_vertices.(F)
[6, 6, 4, 6, 4, 4, 6, 4, 6, 6, 4, 6, 6, 4]
```

### Example: Galois Groups

```
R, x = PolynomialRing(QQ, "x")
k, a = number_field(x^5-2)
G, C = galois_group(k)
roots(C, 1)
5-element Array {qadic,1}:
583730*1048589^0 + 0(1048589^1)
(333313*1048589^0 + 0(1048589^1))*a + 655516*1048589^0 + 0(1048589^1)
(715276*1048589^{\circ}0 + 0(1048589^{\circ}1))*a + 576975*1048589^{\circ}0 + 0(1048589^{\circ}1)
(641808*1048589^{\circ}) + 0(1048589^{\circ}))*a + 419477*1048589^{\circ}) + 0(1048589^{\circ})
 (406781*1048589^0 + 0(1048589^1))*a + 910069*1048589^0 + 0(1048589^1)
describe (G)
"C5 : C4"
```

# Example: GIT-Fans with Symmetry

Let  $\mathfrak a$  be polynomial ideal, homogeneous with respect to the grading given by (columns of) integer matrix Q. Consider the induced torus action on the affine variety  $V(\mathfrak a)$ .

 Dolgachev and Hu (1998): GIT-fan classifies all possible quotients (of choices of open sets) in the sense of Mumford's geometric invariant theory in terms of a polyhedral fan.

#### Example<sup>1</sup>

For 
$$\mathbb{C}^* \times \mathbb{C}^2 \to \mathbb{C}^2$$
,  $t \cdot (x, y) = (tx, ty)$ ,  $Q = (1, 1)$ ,  $\mathfrak{a} = 0$ 

$$U_1 = \mathbb{C}^2$$

$$U_2 = \mathbb{C}^2 \setminus \{0\}$$

yielding as quotients a point and  $\mathbb{P}^1$ , respectively.

# GIT-fan of affine cone over $\mathbb{G}(2,5)$ I

In the following, a = Pluecker ideal and Q = canonical grading matrix.

```
using GITFans
Q = [ ... ]; n = size(Q, 1)
Qt, T = PolynomialRing(QQ, :T => 1:n)
D = free_abelian_group(size(Q,2))
w = [D(Q[i, :]) \text{ for } i = 1:n]
R = grade(Qt, w)
a = ideal(R, [
     T[5]*T[10] - T[6]*T[9] + T[7]*T[8],
     T[1]*T[9] - T[2]*T[7] + T[4]*T[5],
    T[1]*T[8] - T[2]*T[6] + T[3]*T[5],
     T[1]*T[10] - T[3]*T[7] + T[4]*T[6].
     T[2]*T[10] - T[3]*T[9] + T[4]*T[8].
]);
```

# GIT-fan of affine cone over G(2,5) II

20 110 240 225 76



# GIT-fan of affine cone over G(2,5) III

Adjacency graph of GIT-cones of maximal dimension / of their orbits.



# Contributing to OSCAR

http://oscar-system.org/

#### Comments and Feature Requests

- join us on Slack
  - send email to webmaster-oscar@mathematik.uni-kl.de for an invitation
- consider subscribing to the oscar-dev mailing list

#### Contributing Code

- write your own Julia package and contact us (see above)
- fork on GitHub and submit pull request

# Example: JuLie by Uli Thiel (version 0.1 of Feb 03, 2021)

### Algebraic Lie theory, representation theory, and relevant combinatorics

Now, you can start using the package as follows:



```
julia> using JuLie
julia> partitions(10)
```

You can get help for a function by putting a question mark in front, e.g.

julia> ?partitions

#### Motivation

Especially for combinatorics there's a lot already in other computer algebra systems and this justifies the question: why another package? I will give 3 (interwoven) reasons:

- 1.1 want to create a package that covers the mathematics that I especially care about in a way that I think about it. One distant goal is to have all the material available from the book Introduction to Soergel bimodules with Elias, Makisumi, and Williamson. It will take a lot of time and I don't know if I succeed but it's one motivation.
- 2. I hope this package will eventually form one pillar of the OSCAR project.
- 3. What really convinced me of Julia as programming language—and thus of the whole enterprise—is its straightforward high-level syntax (like Python) paired with incredible performance (unlike Python). Have a look at the following examples creating the list (not an iterator) of all partitions of the integer 90 (there are ~56.6 million) in different computer algebra systems.

In Sage (v9.1):

```
sage: time X=Partitions(90).list()
Wall time: 3min 5s
#Uses 26.665GiB mem, quitting Sage takes quite a bit of time
```

https://ulthiel.github.io/JuLie.jl/stable/

# **Concluding Remarks**

- OSCAR v0.5.1 (Feb 12, 2021)
  - Julia v1.5.3
- try this demo at home:
  - https://github.com/micjoswig/oscar-notebooks/blob/ master/ICERM-210216/
  - Julia Package Manager: activate / instantiate
- contact us:
  - http://oscar-system.org
  - webmaster-oscar@mathematik.uni-kl.de