0SCAR: The Project

Michael Joswig
TU Berlin & MPI-MiS Leipzig
... and the 0SCAR Development Team

ICERM, Feb 16, 2021

OSCAIR TR 195

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021

What is 0SCAR?

http://oscar-system.org/

@ joint software project of the CRC TRR 195, funded by DFG
e written in Julia
e planned duration: 2017-2028, three phases

(" oscar h

algebraic

non-

group and tropical and commutative CAP
Julia number theory || representation | polyhedral if:""‘“r:lt"t’;;:‘s algebra and
theory geometry e free probability
g theory CHEVIE
mptopcom
Polymake.jl Singularjl «—GB.jl
polymake Singular
Cornerstones PLURAL

Letterplace

7
GMP FLINT cdd bliss

GPI-Space

GBLA

@ beginning of 2nd phase: fully functional interoperability layer in Julia

Michael Joswig (TU Berlin & MPI-MiS)

0SCAR: The Project

ICERM, Feb 16, 2021

2/13

http://oscar-system.org/

julia

https://julialang.org/

open Source (MIT License)

JIT compilation: near C performance

supports Linux, BSD, MacOS, Windows

friendly C/Python-like (imperative) syntax
easy/efficient C interoperability; good C++ support
designed by mathematically minded people

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021

https://julialang.org/

Selected Julia Features

Julia is polymorphic:

gcd(a::Int, b::Int)
gcd(a::BigInt, b::Biglnt)
gcd(a::Poly{T}, b::Poly{T}) where {T <: Field}

Julia supports multimethods:

*(a::Int, b::Matrix{Int})
*(a::Matrix{Int}, b::Int)

Julia supports triangular dispatch (template parameter chaining):

*(x::T, y::8) where {T <: QuotientRing,
S <: Poly{T}}

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021

Example: Polytope From Group Orbit

= symmetric_group (4)

= [0,1,2,3]

Array(matrix(ZZ, [permuted(x,g) for g in G]))
= convex_hull (M)

TR M @
I

A Polyhedron of dimension 3
ambient_dim (P)
4

F = facets(P; as = :polyhedra)
n_vertices. (F)

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021 5/13

Example: Galois Groups

R, x =

PolynomialRing (QQ, "x")
number_field (x~5-2)

-
)
Il

G, C = galois_group (k)
roots (C, 1)

5-element Array{qadic,1}:
583730%1048589°0 + 0(10485897°1)
(333313%1048589°0 0(1048589"1))*a + 655516%1048589°0
(715276%1048589°0 0(1048589"1))*a + 576975%x1048589°0
(641808%1048589°0 0(1048589°1))%a + 419477%1048589°0
(406781%1048589°0 0(104858971))%a + 910069%x1048589°0

0(1048589°1)
0(1048589°1)
0(1048589°1)

+
+
+
+ 0(1048589°1)

+ o+ o+

describe (G)

"Cs5 : C4"

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 186, 2|

Example: GIT-Fans with Symmetry

Let a be polynomial ideal, homogeneous with respect to the grading given
by (columns of) integer matrix Q. Consider the induced torus action on the
affine variety V(a).
@ Dolgachev and Hu (1998): GlIT-fan classifies all possible quotients (of
choices of open sets) in the sense of Mumford’s geometric invariant
theory in terms of a polyhedral fan.

For C*xC? —C2, t-(xy)=(tx,ty), Q=(1,1), a=0
U =C?
U> = C2\{0} ® ’
yielding as quotients a point and IP', respectively.

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021 7/13

GlIT-fan of affine cone over G(2,5) |

In the following, a = Pluecker ideal and Q = canonical grading matrix.

using GITFans

Q =[... 1; n= size(Q, 1)

Qt, T = PolynomialRing(QQ, :T => 1:n)
D = free_abelian_group(size(Q,2))

w = [D(Q[i, :]1) for i = 1:n]

R = grade(Qt, w)

a = ideal(R, [

T[5]*T[10] - T[6]1*T[9] + TI[7]1*TI[8],
TL11*T[9] - TI[21*T([7] + T[41*TI[5],
T[11*T[8] - T[2]xT[6] + T[31*TI[5],
TL[11*T[10] - T[31*T([7] + T[41*T[6],
T[2]*T[10] - T[31*T[9] + T[4]=TI[8],

1)

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021 8/13

GIT-fan of affine cone over G(2,5) |I

perms_list = [[1,3,2,4,6,5,7,8,10,9],
[6,7,1,6,9,2,8,4,10,3] 1;

S10 = symmetric_group(n);

G, emb = sub([S10(x) for x in perms_list]...);

fanobj GITFans.git_fan(a, Q, G);
fanobj.F_VECTOR

pm::Vector<pm::Integer>

20 110 240 225 76

[@ J. Boehm, S. Keicher, Y. Ren. Computing GIT-fans with symmetry and
the Mori chamber decomposition of Mg . Math. Comp. (2020).

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021 9/13

GIT-fan of affine cone over G(2,5) IlI

Adjacency graph of GlT-cones of maximal dimension / of their orbits.

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021

Contributing to 0SCAR

http://oscar-system.org/

Comments and Feature Requests
@ join us on Slack
e send email to webmaster-oscar@mathematik.uni-kl.de for an invitation

@ consider subscribing to the oscar-dev mailing list

Contributing Code
@ write your own Julia package and contact us (see above)
@ fork on GitHub and submit pull request

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021 11/13

http://oscar-system.org/
mailto:webmaster-oscar@mathematik.uni-kl.de

Example: JuLie by Uli Thiel (version 0.1 of Feb 03, 2021)

Algebraic Lie theory, representation theory, and relevant combinatorics

JuLie Documentation

About

© Using
© Motivation
© Developing

© Contributors
Combinatorics

Lie theory

Version v0.1 v

Now, you can start using the package as follows:

julia> using Julie
julia> partitions(18)

You can get help for a function by putting a question mark in front, e.g.

julia> ?partitions

Motivation

Especially for combinatorics there's a lot already in other computer algebra systems and this justifies the question:
why another package? | will give 3 (interwoven) reasons:

1.1want to create a package that covers the mathematics that | especially care about in a way that | think about it.
One distant goal is to have all the material available from the book Introduction to Soergel bimodules with Elias,
Makisumi, and Williamson. It will take a lot of time and | don't know if | succeed but it's one motivation.

2.1 hope this package will eventually form one pillar of the OSCAR project.

3. What really convinced me of Julia as programming language—and thus of the whole enterprise—is its
straightforward high-level syntax (like Python) paired with incredible performance (unlike Python). Have a look
at the following examples creating the list (not an iterator) of all partitions of the integer 90 (there are ~56.6
million) in different computer algebra systems.

In Sage (v9.1):

sage: time X=Partitions(9@).list()
Wall time: 3min Ss

#Uses 26.665GiB mem, quitting Sage takes quite a bit of time

https://ulthiel.github.io/Julie.jl/stable/

0SCAR: The Project

ICERM, Feb 16, 2021

https://ulthiel.github.io/JuLie.jl/stable/

Concluding Remarks

@ 0SCAR v0.5.1 (Feb 12, 2021)
@ Juliavi1.5.3

@ try this demo at home:

@ https://github.com/micjoswig/oscar-notebooks/blob/
master/ICERM-210216/
e Julia Package Manager: activate / instantiate

@ contact us:

@ http://oscar-system.org
@ webmaster-oscar@mathematik.uni-kl.de

Michael Joswig (TU Berlin & MPI-MiS) 0SCAR: The Project ICERM, Feb 16, 2021

https://github.com/micjoswig/oscar-notebooks/blob/master/ICERM-210216/
https://github.com/micjoswig/oscar-notebooks/blob/master/ICERM-210216/
http://oscar-system.org

