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Verlinde Algebras

The FusionRing method in Sage has methods for working
with Verlinde algebras, which are the Grothendieck rings of
certain Modular Tensor Categories (MTC) that arise in different
contexts.

Wess-Zumino-Witten conformal field theories
Representations of quantum groups at roots of unity
Representations of affine Lie algebras

These MTC and Verlinde algebras have some “magical”
properties and applications

Knot invariants and braid group representations
Applications in topological quantum computing
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A similar familiar category

Let G be a compact Lie group. The irreducible representations
are finite-dimensional and are in bijection with the dominant
weights. These are lattice points in a cone, the positive Weyl
chamber

{v ∈ X∗(T)|〈v, α∨i 〉 > 0},

T = maximal torus, α∨i = simple coroots.

example: G = SU(3)
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The WeylCharacterRing

The Grothendieck group of the category of finite dimensional
representations of G is the WeylCharacterRing. It has a
basis parametrized by the dominant weights.

The multiplication decomposes tensor products into
irreducibles.
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: A2(1,1)*A2(4,2)
A2(3,1) + A2(2,3) + A2(5,0) + 2*A2(4,2) + A2(3,4)
+ A2(6,1) + A2(5,3)

It has further methods to compute weight multiplicities,
symmetric and exterior powers, Frobenius-Schur indicators,
and branching rules.
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The Fusion Category of Level k

The Fusion Category of the Level k Wess-Zumino-Witten
conformal field theory has a similar structure to the Weyl
character ring. However we truncate the Weyl chamber at level
k resulting in the level k fundamental alcove:

〈x, α∨i 〉 > 0,

〈x, α∨highest〉 6 k.

In this example G = SU(3) and k = 3. There are 10 simple
objects in this monoidal category.
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Contributors

The FusionRing code in Sage was mostly written by Daniel
Bump and Guillermo (Willie) Aboumrad, with support from
Travis Scrimshaw. This code is already merged in Sage, and it
can do most of the calculations for applications.

The F-matrix code, which is still under development, is needed
to complete the picture. With this, working F-matrix code was
prototyped by Galit Anikeeva, Daniel Bump and Guillermo
Aboumrad in:

Trac Ticket #30423 (web link).

Recently major improvements have been found by Aboumrad,
allowing much larger cases and computations of braid group
representations. We hope these will be available soon.

https://trac.sagemath.org/ticket/30423
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Anyons

One application of Fusion categories is to computing the
properties of nonabelian anyons, which are quasiparticles that
emerge in connection with the quantum Hall effect. Potentially
these can be harnessed for quantum computing.

Anyons are neither bosons nor fermions, for interchanging two
particles produces a phase shift in the wave function that can
be a root of unity, not necessarily ±1. Such particles can only
exist is two dimensional systems. In the quantum Hall effect the
particles are constrained to a two-dimensional plate.

Permuting the particles produces an entangled state. To
compute it, one must work with a braid group representation.
We will explain how the fusion code can compute these.
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Some references

Bakalov and Kirillov, Lectures on tensor categories and
modular functors, AMS (2001).
Rowell and Wang, Mathematics of topological quantum
computing. Bull. AMS 55 (2018). arXiv:1705.06206
Di Francesco, Mathieu and Senechal, Conformal Field
Theory, Springer 1997, Chapter 16
Turaev, Quantum invariants of knots and 3-manifolds, de
Gruyter 1994, 2010 and 2016
P. Bonderson, Nonabelian anyons and interferometry,
Dissertation (2007). https://thesis.library.caltech.edu/2447/
Z. Wang, Topological quantum computation. Providence,
RI: American Mathematical Society (AMS), 2010.

https://arxiv.org/abs/1705.06206
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The FusionRing

The Grothendieck group of the level k fusion category may be
constructed from the FusionRing method. This class is very
similar to the WeylCharacterRing and in fact inherits from it
as a Python class. You can name the simple objects whatever
you want.
sage: I = FusionRing("E8",2,conjugate=True)
sage: I.fusion_labels(["i0","p","s"],inject_variables=True)
sage: b = I.basis().list(); b
[i0, p, s]
sage: [[x*y for x in b] for y in b]
[[i0, p, s], [p, i0, s], [s, s, i0 + p]]

However the FusionRing has a number of quantum methods
that require explanation.
sage: [(b,b.\rred{ribbon}()) for b in I.basis()]
[(i0, 1), (p, -1), (s, zeta128^8)]
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The FusionRing (continued)

The code in Sage 9.2 is complete except for the F-matrix code,
and includes methods for the quantum dimensions, S-matrix,
twists, Virasoro central charge, etc. As currently implemented,
methods output elements of a cyclotomic field. An option for
QQbar output may be added.

Sage 9.3 will have a bugfix in the R-matrix (#30423.)

The F-matrix code will be available in either Sage 9.3 or 9.4. An
early version is in a git branch linked from #30423. A better
version should be available soon.

Reference Manual Page for FusionRing
Trac Ticket #30423

https://trac.sagemath.org/ticket/30423
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/fusion_ring.html
https://trac.sagemath.org/ticket/30423
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Monoidal Categories

The quantum methods of the FusionRing reflect the fact that
the fusion category is ribbon.

A ribbon category is first of all a monoidal category, meaning
that it has an “tensor” bifunctor ⊗ that is associative in that
there is given a natural associator isomorphism

α : (A⊗ B)⊗ C −→ A⊗ (B⊗ C)

such that the Pentagon Relation is satisfied:

((A⊗ B)⊗ C)⊗ D

(A⊗ B)⊗ (C ⊗ D)

A⊗ (B⊗ (C ⊗ D))

(A⊗ (B⊗ C))⊗ D A⊗ ((B⊗ C)⊗ D)
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Rigid Braided Categories

A monoidal category is braided if it also has a natural
commutativity morphism

cA,B : A⊗ B→ B⊗ A

subject to the hexagon relations:

A⊗ (B⊗ C) (B⊗ C)⊗ A

(A⊗ B)⊗ C B⊗ (C ⊗ A)

(B⊗ A)⊗ C B⊗ (A⊗ C)

We also assume the mirror image relation (not shown).
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Graphical representation

The morphisms cA,B : A⊗ B→ B⊗ A and cB,A : B⊗ A→ A⊗ B
are not inverses. So cA,B and c−1

B,A are distinct morphisms
A⊗ B→ B⊗ A. We represent these graphically:

A⊗ B

B⊗ A

A ⊗ B

B ⊗ A

A⊗ B

B⊗ A

A ⊗ B

B ⊗ A

Read these from top to bottom.



Fusion Rings Quantum Methods F-matrices

The Yang-Baxter equation

The hexagon equations plus naturality imply commutativity of:

B⊗ A⊗ C B⊗ C ⊗ A

A⊗ B⊗ C C ⊗ B⊗ A

A⊗ C ⊗ B C ⊗ A⊗ B

C B A

A B C

=

C B A

A B C
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The braid group action

Given an object in a braided category, using the Yang-Baxter
equation, we obtain an action of the Artin braid group Bn (with
n strands) on

⊗n A for any object A:

A A A A

A A A A

Fusion categories are braided, so they come with braid group
actions, and these braid group actions are important in
topological quantum computing.
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Rigid categories

A monoidal category has an identity element I such that
A⊗ I ∼= I ⊗ A ∼= A. In a rigid category every object A has a left
dual A∗ with morphisms ev : A∗ ⊗ A→ I and coev : I → A⊗ A∗.

A∗ A

I A A∗

I

We suppress the I:

A∗ A

A A∗
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Quantum Dimension

In a rigid braided category if A ∼= A∗∗ we may compose the
evaluation and coevaluation:

I A⊗ A∗ Icoev ev

This is a morphism I → I, thus a scalar, the quantum
dimension.

A = A∗∗ A∗

It is only defined if A = A∗∗ and it only has nice properties if the
category is ribbon. In a braided rigid category the isomorphism
A ∼= A∗∗ is true but only in a ribbon category is there a
distinguished isomorphism that makes everything work.



Fusion Rings Quantum Methods F-matrices

Ribbon Categories

In a ribbon category every element has A an endomorphism θA

called the twist or ribbon element with magical properties. The
isomorphism I → A⊗ A∗ → I becomes more precisely the
composition

I A⊗ A∗ A∗ ⊗ A A∗ ⊗ A Icoev cA,A∗ 1⊗θ−1
A ev

A = A∗∗ A∗
becomes

A

A∗

θ−1
A
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Modular Tensor Categories

We have already seen that level k WZW fusion category has
only finitely many simple objects. It is a ribbon category, so it
has a ribbon element.

If i, j are simple objects consider the Hopf link:

i i∗j j∗

This is an endomorphism I → I, that is a scalar si,j. The matrix
S = (si,j) is called the S-matrix. Many things can be computed
in terms of it.
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Fusion Ring Methods in Sage

Given a modular tensor category, the following quantities are
needed:

Fusion Rules (multiplication in the FusionRing)
Quantum dimensions of simple objects
Twists
Total quantum order
Central charge
S-matrix

Sage can compute all of the above. Two more quantities
require discussion:

R-matrix (yes with caveats)
F-matrix (coming soon: trac ticket #30423)
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Example: the Fibonacci MTC

Here are some computations for a well-known example, the
Fibonacci MTC.
sage: F = FusionRing("G2",1) # Fibonacci anyons
sage: F.fusion_labels(["i0","t"],inject_variables=True)
sage: [i0*i0,i0*t,t*t] # fusion rules
sage: [x.q_dimension() for x in F.basis()] [1, -zeta60^14 + zeta60^6 + zeta60^4]
sage: phi = t.q_dimension()
sage: phi^2==phi+1
True
sage: F.virasoro_central_charge()
14/5
sage: F.s_matrix()
[ 1 -zeta60^14 + zeta60^6 + zeta60^4]
[-zeta60^14 + zeta60^6 + zeta60^4 -1]

The S-matrix can be alternatively normalized to be unitary, and
the individual entries can also be had.
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Multiplicity-free case

An important special case is when the Fusion category is
multiplicity free meaning that if i, j, k are irreducible then the
multiplicity Nij

k of i in i⊗ j is 6 1.

The multiplicity-free case is an important one. For example, the
MTC that arise in connection with topological quantum
computing schemes are usually multiplicity-free.

Two things may be more easily studied in the multiplicity-free
case.

The R-matrix or 3j-symbol
The F-matrix or 6j-symbol
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The R-matrix

The R-matrix is a synonym for the commutativity morphism
cA,B : i⊗ j→ j⊗ i in our previous notation. The module i⊗ j may
be reducible, so this is not a simple scalar.

We assume that i⊗ j is multiplicity-free for all simple i, j. If k
occurs in i⊗ j, let γi,j

k : k→ i⊗ j be a fixed injection. It is
determined up to scalar. The data {γi,j

k } are called a gauge.

Once a gauge is fixed, the R-matrix has tangible meaning.

k k

i⊗ j j⊗ i

Ri,j
k

γi,j
k γj,i

k
ci,j

The top arrow is a scalar that Sage can compute.
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Definition of the F-matrix

Just as the R-matrix captures the commutativity morphism, the
F-matrix captures the associator

αi,j,k : (i⊗ j)⊗ k→ i⊗ (j⊗ k).

Let l be a another object. Then αi,j,k induces a linear map

Hom(l, (i⊗ j)⊗ k)→ Hom(l, i⊗ (j⊗ k)).

We have bases of these Hom spaces as follows.
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Definition of the F-matrix (continued)

Let x and y be auxiliary objects. A basis for Hom(l, (i⊗ j)⊗ k)
consists of the composite morphisms

l x⊗ k (i⊗ j)⊗ k
γx,k

l γi,j
x ⊗1k

.

Call this composition φx
i,j,k. Let ψy

i,j,k be the morphism
Hom(l, i⊗ (j⊗ k)) that is the composition

l i⊗ y i⊗ (j⊗ k)
γi,y

l 1i⊗γj,k
y

.

The F-matrix is the matrix of the linear transformation
Hom(l, (i⊗ j)⊗ k)→ Hom(l, i⊗ (j⊗ k)) induced by αi,j,k in terms
of the bases φx

i,j,k and ψy
i,j,k of these two Hom spaces.
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Computing the R-matrix

The R-matrix Ri,j
k may be expressed in terms of the S-matrix by

a formula of Bonderson, Delaney, Galindo, Rowell, Tran and
Wang. The difficult case is when i = j. In that case, these
authors proved

Ri,i
k =

∑
x,y,z

θ2
y

θiθ2
x

S0,ySi,zSx,zSk,xSy,z

S0,z

where θx is the ribbon element (a root of unity) and Sx,y is the
S-matrix, normalized to be unitary.
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Computing the F-matrix

By contrast, computing the F-matrix is a delicate matter. Unlike
all the other methods we have encountered, F-matrix is not
given by a simple formula in terms of the S-matrix, as far as we
know.

Bonderson’s thesis describes a nuanced approach to
computing the F-matrices. Last summer, Galit Anikeeva, Willie
Aboumrad and I implemented an “F-matrix factory” in Trac
Ticket #30423. This was able to handle small cases.

Recently Aboumrad has much better code that can compute
much larger cases. It is hoped that this will be available soon.
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The pentagon equations

The pentagon equations:

((A⊗ B)⊗ C)⊗ D

(A⊗ B)⊗ (C ⊗ D)

A⊗ (B⊗ (C ⊗ D))

(A⊗ (B⊗ C))⊗ D A⊗ ((B⊗ C)⊗ D)

impose conditions on the values of the F-matrix. These are
algebraic equations, and in small cases we can try to solve
them using Groebner basis methods.
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Pentagon equations only

There are many solutions to the pentagon equations, but these
can be adjusted using the gauges, so effectively there is only
one solution.

However the pentagon equations are rather diffuse and difficult
to solve without making use of further information. We may
make a graph on the variables, joining two variables in an edge
if they occur in the same equation. The graph of the pentagon
equations is very highly connected.

For B2 at level 2, there are 725 unknowns in the F-matrix.
These must satisfy 13175 equations coming from the pentagon
relations. Solving these is a difficult task.
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Hexagon equations

The hexagon equations also constrain the F-matrix.

A⊗ (B⊗ C) (B⊗ C)⊗ A

(A⊗ B)⊗ C B⊗ (C ⊗ A)

(B⊗ A)⊗ C B⊗ (A⊗ C)

We can try to solve the pentagon relations without the hexagon
equations, but actually the hexagon relations are very helpful.
For the B2 level 2 example, there are 725 hexagon equations
including useful ones like:

fx715 + 1 == 0
fx563*fx707 + (-zeta40^8)*fx564*fx709

+ (-zeta40^14)*fx681 == 0
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Why the Hexagon Equations

It is important to use the hexagon equations in addition to the
pentagon equations for two reasons:

The equation graph for the hexagon equations has more
favorable localization properties, making the system easier
to solve.
Unlike the pentagon equations, the hexagon equations
include information from the R-matrix. Having set the
R-matrix already partially fixes the gauge. On solving the
pentagon equations without the hexagon equations, the
resulting solutions may not be consistent with the hexagon
equations due to the gauge being set twice.
The hexagon equations bring in roots of unity from the
R-matrix making possible a cyclotomic solution.
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Information from unitaricity

Bonderson pointed out in his thesis that the F-matrix can be
made unitary and this gives information about which F-matrix
values are automatically unitary. Aboumrad found in recent that
by including the conditions of unitaricity with the pentagon and
hexagon equations, much larger cases can be solved.

The unitary F-matrix is not cyclotomic, so unlike most of the
FusionRing methods, if unitaricity is imposed the solutions
will be in QQbar.

It is intended that these methods will be included in later
versions of Sage.
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