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STUDYING SINGULARITIES USING CLOSURE OPERATIONS

REBECCA R.G.

Background:
Recall that for an R-module M , the trace ideal of M is

trM (R) =
∑

f∈HomR(M,R)

f(M).

When M is finitely-generated, this agrees with the test ideal of the closure operation clM .
Problem:
Compute the test/trace ideals of some finitely-generated Cohen-Macaulay modules (also

called maximal Cohen-Macaulay modules). The examples given below come from Example
5.25 in Cohen-Macaulay Representations by Leuschke and Wiegand.

(1) Let R = k[[u5, u2v, uv3, v5]] ⊆ k[[u, v]] = S, where k has characteristic not equal to
5. The indecomposable finitely-generated Cohen-Macaulay R-modules are:
(a) M0 = R,
(b) M1 = R(u4, uv, v3) ∼= (u5, u2v, uv3),
(c) M2 = R(u3, v) ∼= (u5, u2v),
(d) M3 = R(u2, uv2, v4) ∼= (u5, u4v2, u3v4), and
(e) M4 = R(u, v2) ∼= (u5, u4v2).

Compute the trace ideals of these modules in Macaulay2 or by hand. What is the
intersection of all of the trace modules?

(2) Let R = k[[u8, u3v, uv3, v8]] ⊆ k[[u, v]] = S, where k has characteristic not equal to
2. The indecomposable finitely-generated Cohen-Macaulay R-modules are:
(a) M0 = R,
(b) M1 = R(u7, u2v, v3) ∼= (u8, u3v, uv3),
(c) M2 = R(u6, uv, v6) ∼= (u8, u3v, u2v6),
(d) M3 = R(u5, v) ∼= (u8, u3v),
(e) M4 = R(u4, u2v2, v4) ∼= (u8, u6v2, u4v4),
(f) M5 = R(u3, uv2, v7) ∼= (u8, u6v2, u5v7),
(g) M6 = R(u2, u5v, v2) ∼= (u2v6, u5v7, v8), and
(h) M7 = R(u, v5) ∼= (uv3, v8).
Compute the trace ideals of these modules in Macaulay2 or by hand. What is the
intersection of all of the trace modules?

(3) Both of these were examples of a more general set of rings. Let S = k[[u, v]], r ≥ 2
an integer not divisible by char(k), and choose 0 < q < r with (q, r) = 1. Take
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2 REBECCA R.G.

G = 〈g〉 ∼= Z/rZ to be the cyclic group of order r generated by g =

(
ξr 0
0 ξqr

)
∈

GL(2, k), where ξr is a primitive rth root of unity.
Let R = k[[u, v]]G be the corresponding ring of invariants, so that R is generated

by the monomials uavb satisfying a+bq ≡ 0 (mod r). The indecomposable finitely-
generated Cohen-Macaulay R-modules are

Mj = R(uavb | a+ qb ≡ −j (mod r)).

(a) Confirm that this gives rise to the first example when r = 5 and q = 3 and the
second example when r = 8 and q = 5.

(b) For an arbitrary q and r, what are the test/trace ideals of the Mj? What is
the intersection of the trace ideals of all of the Mj? You can start with the
case r = q+ 1 (this is done in Benali-Pothagoni-R.G., but via an isomorphism
to an (Aq) hypersurface singularity).

(4) A more general open question is: how do the test/trace ideals of finitely-generated
Cohen-Macaulay modules correspond to the singularities of the ring? Previous
work of the speaker (Perez-R.G.) and of Herzog-Hibi-Stamate shows some cases
where there are connections. Choose a class of finitely-generated Cohen-Macaulay
modules and compute their trace ideals. Do certain properties of these trace ideals
correspond to existing classes of singularities? Or can you find a new class of singu-
larities corresponding to particular behavior of finitely-generated Cohen-Macaulay
module trace ideals?

Relevant Reading:
Skim through https://arxiv.org/abs/2103.02529 (Benali-Pothagoni-R.G.). Pay par-

ticular attention to Definition 2.10, how they compute examples of test/trace ideals, and
how the examples relate to the properties of the rings.

The theoretical basis for this research approach is developed in https://arxiv.org/

abs/1907.02150 (Perez-R.G.).
More examples of finitely-generated Cohen-Macaulay modules (including all the ones

appearing in Benali-Pothagoni-R.G.) can be found in Cohen-Macaulay Representations
by Leuschke and Wiegand, and Cohen-Macaulay Modules over Cohen-Macaulay Rings by
Yoshino.

Work on trace ideals of canonical modules appears in these papers (2 of them by Herzog-
Hibi-Stamate): https://arxiv.org/search/?query=herzog+hibi+stamate&searchtype=
all&source=header.

https://arxiv.org/abs/2103.02529
https://arxiv.org/abs/1907.02150
https://arxiv.org/abs/1907.02150
https://arxiv.org/search/?query=herzog+hibi+stamate&searchtype=all&source=header
https://arxiv.org/search/?query=herzog+hibi+stamate&searchtype=all&source=header


Open problems

Thomas Reichelt

All problems presented deal with GKZ systems M0
A where A is a d× n integer matrix which

satisfies

1. ZA = Zd

2. A is saturated, i.e. R≥0A ∩ Zd = NA

3. A is pointed: NA ∩ (−NA) = {0}.

Question 1: What is the length of M0
A?

Let σ be the cone R≥0A, i.e. the cone generated by the columns of A. Denote by σ∨ the
dual cone and by γ⊥ the annihilator of γ. There is a containment reversing bijection

γ ↔ γ∗ = γ⊥ ∩ σ∨

If γ has dimension dγ then γ∗ has dimension dσ − dγ .

Denote by Xγ∗ the affine toric variety associated to the cone γ∗.

Set µσγ (e) = ihdσ−dγ−e(Xγ∗), with e ∈ {0, . . . , dσ−dγ}. Here ihdσ−dγ−e(Xγ∗) is the dimension
of the dσ − dγ − e intersection cohomology of Xγ∗ .

The length of M0
A is

`(M0
A) =

∑
γ⊆σ

∑
e

µσγ (e) =
∑
γ⊆σ

χ(X∗γ ).

Let P be the polytope given by the intersection of a generic hyperplane with the cone σ. The
intersection cohomology of Xγ∗ can be expressed by face numbers of the polytope P .

fi number i-dimensional faces of P

fi,j the number of all pairs (i-face,j-face) that are contained in each other.

We get the following lenghts

d = 3 : `(M0
A) = 3f0 − 1

d = 4 : `(M0
A) = −2f0 + 4f1

d = 5 : `(M0
A) = 7− 5f0 − f2 + 2f2,0

Is there a closed formula for all ranks?
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Question 2: How do the simple modules contribute to the holonomic rank of M0
A?

We have M0
A = FL(h̃+OT̃ )

GrWd+e(h̃+OT̃ ) =
⊕
γ

M IC(Xγ∗ ,Lγ,e) for e ∈ [0, d]

What is the holonomic rank of FL(M IC(Xγ∗ ,Lγ,e))?

More general: Compute holonomic rank of FL(M IC(X)) where X is an affine toric variety.

Question 3: What are the generators of the simple modules in a composition series of M0
A?

It is known the lowest weight step is a simple module which corresponds to the interior ideal
of C[NA]. One can explicitly describe the generators in all weight steps for dimension 3.

Can one do it in general?

Question 4: Compute the weight filtration on FL(Mβ
A) for β 6= 0.

A. Steiner showed that for β ∈ Qd the D-module FL(Mβ
A) can be expressed as

FL(Mβ
A) ' ω†j+OβT̃

where
T̃

j−→ U
ω−→ Cn

and U depends on β. So FL(Mβ
A) is a complex mixed Hodge module.

Can one generalize the presented methods to this setting?
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Bernstein-Sato polynomials and ν-invariants

ICERM: D-modules, Group Actions, and Frobenius: Computing on Singularities

August 13, 2021

1. Consider the polynomial f = x2 + y2 over a field L.

(a) If L = Fp where p > 2, find ν
(x,y)
f (p), the maximum integer N for which fN is not in the

ideal (xp, yp) of L[x, y].
(b) If L = Q, find an element δ of the Weyl algebra

Q⟨x, y, ∂x, ∂y⟩/(∂xx− x∂x − 1, ∂yy − y∂y − 1)

and a polynomial b over Q one variable, such that for all integers s,

δ • fs+1 = b(s)fs.

(c) Compare ν
(x,y)
f (p) modulo p to the roots of b.

2. Now fix the cusp f = x3 − y2 over L.

(a) Suppose that L = Fp, and p > 3. If p ≡ 1 mod 3, show that νf (p) = 5p−5
6 . Then find a

formula for νf (p) when p ≡ 2 mod 3.

(b) If L = Q, consider the polynomial

δ(z) = − 1

12
x ∂x ∂

2
y +

1

27
∂3
x − 3

8
∂2
y − 1

4
∂2
y z

over the Weyl algebra, and the polynomial

b(z) = (z + 1)

(
z +

5

6

)(
z +

7

6

)
over the rational numbers. Verify (if you dare!) that δ(s) • fs+1 = b(s)fs for all integers s.

(c) Compare the roots of b to the reductions of your formulas for νf (p) modulo p.
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3. Finally, consider f = x5 + y4 over L.

(a) Suppose that L = Fp for some prime p. Find, for some integer m, formulas for ν
(x,y)
f (p) in

terms of p when p ≡ 1 mod m, and when p ≡ −1 mod m, which are valid for p ≫ 0.

(b) When L = Q, the set of roots of the Bernstein-Sato polynomial of f is

−
{

9

20
,
13

20
,
7

10
,
17

20
,
9

10
,
19

20
, 1,

21

20
,
11

20
,
23

20
,
13

10
,
27

20
,
31

20

}
.

Which roots do you obtain by taking your formulas for ν
(x,y)
f (f) modulo p?

(c) Try detecting the remaining roots using one, or both, of the following strategies:

• Determine formulas for ν
(x,y)
f (p) for other congruence classes of p modulo m.

• Determine formulas for ν
(xs,yt)
f (p), the maximum N for which fN /∈ (xsp, ytp), for small

values of s and t when p ≡ ±1 mod m.

You may want to use Macaulay2 or other software as a computational aid!

(d) When L = Q, the roots of the Bernstein-Sato polynomial of

g = x5 + y4 + x3y2

are the same as that for f = x4 + y5, except the root − 11
20 is replaced with − 11

20 − 1 = − 31
20 .

Use the techniques you have developed to detect this root.
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