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↳ We can sometimes prove theorems
about symbolic powers

by proving statements
about differential powers instead
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How about in mixed characteristic?
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From now on : PEZ prime
A-=3 or DVR ruth .mn/-ormezerp
R A-algebra
Deflation Goyal,Buium ) pez prime, regular on R

A p- derivation onR is a function 8 : R→ R suchthat :

e) 8(1) = 0 nP+yP- Coe+g)
P

2) SCR + g) = score ) + 8cg) +-p
3) Sony) = ntscy) + scaly

"
+ pscx) say )



Note scx ) = IGe)p-
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We do have f-derivations when :
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R has a p-derivation 8, PEI
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the nth mixed differential power of I is
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theorem (Dre Stefani - G- Jeffries)
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Application Cheveley bounds

theorem (Cheveley, 1943)
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Sketch :
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Main obstruction to doing this in mixed characteristic :

to define mixed differential powers, we need ap -derivation !
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We do have examples showingthese can besharp .
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