Symathc powers in mixed charactenstic
(joint work with Alessandro De Stefani and Jack Deffies)
$\mathcal{R} A$-algebra
the A-linear differential operators on $R, \mathcal{Q}_{R \mid A}=\bigcup_{n \geqslant 0} \partial_{R \mid A}^{n}$, are def ned by

1) $\mathcal{X}_{R \mid A}^{0}=\operatorname{Hom}_{R}(R, R) \cong R$
2) $\partial_{R \mid A}^{n}=\left\{\partial \in \operatorname{Hom}_{A}(R, R) \mid[\partial, x]=\partial \cdot x-x \cdot \partial \in \partial_{R \mid A}^{n-1}\right.$ for all $\left.x \in D_{R \mid A}^{0}\right\}$

I ital in R
n-th differential power of I

$$
I^{\langle n\rangle}:=\left\{f \in R \mid \quad \partial(f) \in I \text { for all } \partial \epsilon \partial_{R \mid A}^{n-1}\right\}
$$

these have a connection to symbolic powers
the nth syubbohc power of $I=\sqrt{I}$ is

$$
I^{(n)}:=\bigcap_{I \in A \operatorname{As}(R / I)}\left(I^{n} R_{P} \cap R\right)
$$

throughout: $I=\sqrt{I}$
derma $R f g$ A-abgebra. Then $I^{(n)} \in I^{\langle n\rangle}$ for all $n \geqslant 1$
\rightarrow We can sometimes quove theorevis about symbolic powers by pooing statements about differential gower instead
theorem (Zaneski-Nogata)

$$
\begin{aligned}
& R=k\left[x_{1}, \ldots, x_{d}\right], k \text { perfect feed } \\
& I=\sqrt{I} \\
& I^{(n)}=I^{\langle n\rangle}=\bigcap_{\substack{m \geq I \\
m \text { max }}} m^{n} \quad \text { for all } n \geq 1
\end{aligned}
$$

\Rightarrow Afferentical operators are great to study symbolic powers

How about in mixed chanacterctic?
Example $R=\mathbb{Z}[x], \quad m=(2, x)$

$$
\begin{aligned}
\eta^{n}= & 3_{\text {but }}^{(n)} \text { for all } n \geqslant 1 \\
\partial(2) & =2 \cdot \partial(1) \in(2) \subseteq 3 \text { for all } \partial \in D_{R \mid A} \\
& \Rightarrow \exists^{(n)} \neq 3^{<n>}
\end{aligned}
$$

From row on:
$A=\mathbb{Z}$ or $\partial V R$ with informer P
R A-algeloa
Defution (Doyal, Brice) pe Z pirme, regular on R
$A p$-deuvation on R is a function $\delta: R \rightarrow R$ such that:

1) $\delta(1)=0$
2) $\quad \delta(1)=0$
3) $\delta(x+y)=\delta(x)+\delta(y)+\frac{x^{p}+y^{p}-(x+y)^{p}}{p}$
4) $\delta(x y)=x^{p} \delta(y)+\delta(x) y^{p}+p \delta(x) \delta(y)$

Note $\delta(x)=\frac{\Phi(x)-x^{p}}{P} \Leftrightarrow \Phi(x)=x^{p}+p \delta(x)$ is a p-dentation on R is a eff of the Frobenims map on R / P to R

We do have p-deuvations when:

- $R=\mathbb{Z}: \delta(n)=\frac{n-n^{P}}{P}$ is the unique p-derivation on \mathbb{Z} any p-deuvation δ on a \mathbb{Z}-algebra satisfies $\delta(n)=\frac{n-n}{p}$ for $n \in \mathbb{Z}$
- R complete unnamifed $2 V R$ neth perfect residue fold
- $R=B\left[x_{1}, \ldots, x_{d}\right]$, and 3 admits a p-deuvation

Mixed differential sowers (De stefani- G-deffues) R has a p-derivation $\delta, p \in I$: the with maxed differential gower oI I is

$$
I^{\langle n\rangle_{\max }}:=\left\{f \in R \mid \delta^{a} \cdot \partial(f) \in I \text { for all } a+b<n-1, \partial \in D_{R \mid A}^{b}\right\}
$$

theorem (De stefani - G - Jeffries)
$A=\mathbb{Z}$ a $2 V R$ with uniformize P
R localization of fy sinoth A-algera
R has a p-denvation
Q pure ital in $R, Q \ni P, A / P \longrightarrow R_{Q} / Q R_{Q}$ separable then $Q^{(n)}=Q^{\langle n\rangle_{\text {max }}}$ for all $n \geq 1$

Note Oven singular rungs, we still have $Q^{(n)} \subseteq Q^{\langle n)_{\text {mix }}}$

Aphecation Chevalley bounds
therm (Chevalley, 1943)
(R, m) complete local rung
$\left\{I_{n}\right\}$ decreasing family of acetals
If $\bigcap_{n \geqslant 0} I_{n}=0$, then $\exists f: N \rightarrow N$ such that $I_{f(n)} \subseteq \eta^{n}$ (so $\left\{I_{n}\right\}$ induces a finer topology than the m-odic topology)

Special Case $I_{n}=I^{(n)}, \quad I=\sqrt{I}$
Unform Chevalley derma (Hundee-katz-Vahdadit, 2009)
(R, m) complete local domain
there exerts a constant C, independent of I, such that

$$
I^{(n n)} \subseteq 3^{n}
$$

Note Finding an explant C would give a unefferm bower bound on the m-adic order If elements in $I^{(n)}$
thooem (Zonuski-Nogata) 7 regular \Rightarrow can take $C=1$

$$
I^{(n)} \subseteq 3^{20} \text { for all } n \geqslant 1
$$

theorem (Das-De Stefani-G-Huneke-Nuñz Betancout)
k fold
$R=k\left[f_{1}, \ldots, f_{l}\right] \hookrightarrow S=k\left[x_{1}, \ldots, x_{d}\right] \quad$ graded direct summand

$$
\eta=\underbrace{\left(f_{1}, \cdots, f_{l}\right)}_{\text {homogeneous }} \quad \partial=\operatorname{mox}_{i}\left\{\operatorname{deg} f_{i}\right\}
$$

then $I^{\left(D_{n}\right)} \subseteq 3^{n}$ for all homogeneous $I=\sqrt{I}$ and $a l l n \geq 1$.
Sketch: $R^{\Delta} S$ s grouted splitting

1) Show $\exists^{2 n} \cap R \subseteq \xi^{n} \quad$ where $\eta=\left(x_{1}, \ldots, x_{d}\right)$
2) Show $I^{(n)} \subseteq \eta^{n} \cap R$ for all $n \Rightarrow I^{(2 n)} \subseteq \eta^{2 n} \cap R \subseteq \eta^{n}$ by

- $\eta^{n}=\eta^{\langle n\rangle}=\eta^{(n)}$ for all $n \geqslant 1$
- $f \notin \eta^{n} \cap R \Rightarrow \partial f \notin \eta$ for some $\partial \in \partial_{\text {sike }}^{n-1}$

$$
\begin{aligned}
& \Rightarrow(\underbrace{\operatorname{so\partial })}_{\in Z_{R 1 k}^{n-1}}(f) \notin m \supseteq I \text { sen) } \\
& \Rightarrow f \notin I^{\langle n>} \supseteq I^{(n)}
\end{aligned}
$$

Maw destruction to doing this in mixed characteristic:
to di ne mixed differential powers, we need a p-derivation!
theorm (De Stefami - G-Jeffres)
A DVR wuth unformuzer $p \in \mathbb{Z}$ pume
$R=A\left[f_{1}, \ldots, f_{l}\right] \subseteq S=A\left[x_{1}, \ldots, x_{d}\right], S$ hias a p-denvation
$q=\left(f_{1}, \ldots, f_{e}\right)$
$\xi=q+(p)$
f_{i} homogeneous

$$
D:=\max _{i}\left\{\operatorname{deg} f_{i}\right\}
$$

(1) $\left\{\begin{array}{l}Q \subseteq q^{\text {pime }} \\ R \leftrightarrow S\end{array} \Rightarrow Q^{\left(D_{n}\right)} \subseteq q^{n}\right.$

therefor, $f R \stackrel{\oplus}{\oplus} S, I^{\left(D_{n}\right)} \subseteq \eta_{n}^{n}$ for call homogeneows $I=\sqrt{I}$ and $n \geqslant 1$.

We do have examples showing these can be sharp.
Maun tool $R / P \underset{\oplus}{\stackrel{\Delta}{\infty}} S / p$ s spltting $, \bar{x}:=x / p$

$$
Q^{\{n\}}:=\left\{f \in R \mid s\left(\overline{\left(\delta^{a} \cdot \partial\right)(f)} s\right) \subseteq \bar{Q} \text { forall } a+b<n, \partial \in D_{\text {SIA }}^{n}\right\}
$$

