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Peskine–Szpiro Acyclity Lemma
Suppose R is a commutative, Noetherian, local ring and

M• := 0→ Mq → Mq−1 → · · · → M0

a complex of finite R-modules such that depthMj ≥ j . If the first
nonvanishing homology Hi occurs at i > 0, then depthHi ≥ 1.

Key Points

(a) depthM = min{j | ExtjR(R/m,M) 6= 0}.
(b) Break up complex into short exact sequences. Covariant

HomR(R/m,−) gives progressively smaller lower bounds on depth for
kernels and images.

(c) One exact sequence is different & too short:

0→ ker(Mi → Mi−1)→ Mi → Mi−1.

Covariant HomR(R/m,−) reveals depth ker(Mi → Mi−1) ≥ 1.
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Yearnings: Resolutions over non-commutative rings A

Commutative Land: rings R
◦ depth zero homology =⇒ M• resolves M0/(M1 → M0).
◦ Auslander–Buchsbaum: equate depth with projective dimension:

depthMi ≥ i ! pdimMi ≤ depthR − i .

Noncommutative Land: rings A
◦ Want: criterion on homology =⇒ M• resolves M0/(M1 → M0).
◦ Without depth, no “suitable” covariant functor ala HomR(R/m,−).
◦ Projective dimension attached to contravariant functor HomA(−,A).
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Definition

The grade j(M) of M is min{j | ExtjA(M,A) 6= 0}.

Definition
A ring A is an Auslander regular ring provided:
(a) A is Noetherian (both left and right);
(b) A has finite global homological dimension;
(c) A satisfies Auslander’s condition, i.e. for any finitely generated left

A-module M and for any submodule N ⊆ ExtkA(M,A), the grade of N
is bounded below by j(N) ≥ k .

Proposition (Bjork A.IV Prop 2.2)
Let A be an Auslander regular ring and M a finitely generated left
A-module. Then

j(Ext
j(M)
A (M,A)) = j(M).
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Lemma
Let A be an Auslander regular ring and

M• := 0→ Mm → Mm−1 → · · ·M1 → M0

a complex of finite left A-modules such that pdim(Mq) ≤ m − q. If the
first nonvanishing homology occurs at slot i , then j(Hi ) ≤ m − i < m.

Conclusions differ: grade ! dimension; depth ! projective dimension.

Sketch
(a) Break up into s.e.s., get progressively smaller upper bounds on pdim.
(b) This stops at different & too short exact sequence

0→ ker(Mi → Mi−1)→ Mi → Mi

(c) Contravariant functor HomA(−,A) less helpful here. Instead: make
s.e.s, use Auslander condition & ExtA(ExtA(−,A),A) kung-fu.
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◦ AR := DX ⊗C R . DX algebraic; R finite, C-algebra, regular, domain.
◦ Think: Bernstein–Sato. R = C[s1, . . . , sr ], AR = DX [s1, . . . , sr ].
◦ Extend order filtration to AR by giving R weight zero.

Proposition
Let dimX = n, DX be algebraic, and

M• := 0→ Mn → Mn−1 → · · ·M1 → M0

a complex of finite left AR -modules such that pdim(Mq) ≤ n− q. If all the
homology modules Hi for i > 0 are supported, as OX -modules, on a
discrete set, then M• resolves M0/(M1 → M0).

Key ideas
(a) Grade computed on associated graded side. Lemma =⇒ lower bound

on dim of relative characteristic variety.
(b) Relative characteristic variety is conical in gr(∂) direction. Project to

X × SpecR , get upper bound on dim of relative characteristic variety.
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Algebraic setup

• Cayley’s theorem guarantees that every finite group is a
subgroup of a finite permutation group.

• Degree of G wri�en as ρ(G) is defined to be the smallest natural
number n such that G can be embedded in Sn. Equivalently, we
have a faithful group action of G on X , where |X | = n.

• Trivial bound is ρ(G) ≤ |G| and Cayley’s constant is
α(G) = ρ(G)

|G| .



History

• Johnson’s paper [2] classifies finite groups G such that
p(G) = |G|, and gives the value of p(G) for Abelian groups.

• Other groups such as p-groups, some easy semi-direct products,
and some solvable groups, are studied by Elias et. all in [4, 5].

• Galois proved if q > 11 is a prime number, then
p(PSL2(Fq)) = q + 1.

• Table 4 of [1] contains values of p(G) for classical simple groups
and exceptional simple groups of Lie type.

• The Atlas [2] contains the value of p(G) for all finite sporadic
simple groups.



Simple versus non-simple groups

• For a simple group G computing p(G) is equivalent to finding a
subgroup of G of minimal index.

• Given G, if H is the subgroup of minimal index in G, we obtain a
permutation representation of G on G/H.

• This permutation representation is, in general, not faithful,
unless G is simple.

• In his thesis, Pa�on [3] determined subgroups of minimal index
in SLn(Fq) and SP2m(Fq) for q an odd prime power.

• Cooperstein [3] computed the minimal index of a subgroup for
the remaining classical groups over finite fields using a
generalization of Pa�on’s method. He listed the size of the
kernel of the corresponding permutation representation for each
case.



Linear groups

• Write GLn for the group of nxn invertible matrices and SLn for
the subgroup of GLn with determinant 1.

• Fq denotes the finite field with q elements, where q is taken to
be a power of a prime p.

• {H1, . . . ,Hn} is called a minimal faithful collection of subgroups
if coreG(H1, . . . ,Hn) = {e} and Σi

|G|
|Hi | is minimal.



Some results - Takloo-Bighash and B.

ρ(GL2(Fq)) =

ρ(SL2(Fq)) + Σ odd primes p (with exponents) s.t. p | q − 1,

ρ(GL3(Fq)) = ρ(SL3(Fq)) +

Σ primes p (with exponents) s.t. p | q − 1, p - gcd(3, q − 1),

ρ(GLn(Fq)) ≤ ρ(SLn(Fq)) +

Σ primes p (with exponents) s.t. p | q − 1, p - gcd(n, q − 1).
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Diamond Langlands: Reciprocity Law & Universality [Dob21]

1. Diamond Langlands: (∞, 1)-categorification of Geometric Langlands.
2. Diamond Langlands Functoriality: asserts existence of an
L-homomorphism LD�1 → LD�2 (L-groups of two diamonds over Qp)
that should induce a transfer map from automorphic representations of
D�1 to D�2; reinterpret "p-adic Langlands transfer" as "diamond p-adic
Langlands transfer" SpdQp = Spa(Qcycl

p )/Z×p

Figure: Diamond SpdQp = Spa(Qcycl
p )/Z×

p ; geometric point Spa C → D

3. KEfimov(Y�S,E) and Diamond SpdQp = Spa(Qcycl
p )/Z×p in LT/OF
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Diamond [Sch17, Dob21]

1. Let Perf ⊂ Perfd be the subcategory of perfectoid spaces of
characteristic p. A diamond is a pro-’etale sheaf D on site Perf
written as X/R of a perfectoid space X by a pro-étale eqr.

2. Functor of points. Let C be an algebraically closed affinoid field. A
geometric point Spa(C)→ D is “visible” via pullback along a quasi
pro-étale cover X → D in profinitely many copies of Spa(C).

Figure: D�
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Diamonds in Geometrization of Local Langlands [SchFar] +
D-Modules in Geometric Langlands

1. Geometrize local Langlands through sheaves on the diamond stack of
G-bundles on FFC. E is a finite extension of Qp. G is a reductive
group over E. "Make Spec(E) geometric."

2. LG and
∑

an algebraic curve, there is an equivalence of derived
categories of D-modules on the moduli stack of G-principal bundles
on

∑
and quasi-coherent sheaves on the LG-moduli stack of local

systems on
∑

: as OMod(LocLG(
∑

)
'→

3. (Fargues) BunG = v-stack on PerfF̂q
of G-bundles / curve, where

S = F̂q, XS a perfectoid space (adic space / Qp); family of curves.

4. (Hope 2.3) BunG is a smooth diamond stack.

5. At the level of diamonds, Y �S,E = S x (SpaE)� for S perfectoid.
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Diamond Langlands Functoriality in p-adic Groups [Dob21]

1. Local Functoriality: Let k be a local field. If φ : LG→ LH is an
L-hom, there is a map { (L-packets of) admissible reps of H(k)} → {
(L-packets of) admissible reps of G(k)} π → π

′
, given by

c(π
′
) = φ(c(π)) (unram); satake parameters (conjugacy classes);

L-packet is fiber over an admissible hom φ (S.M.C) .

2. Ludwig: "p-adic Langlands transfer" - p-adic families.

3. Diamond Langlands Functoriality: L -hom LD�1 → LD�2 induces a
transfer map from automorphic reps for D�1 to D�2.

4. "p-adic Langlands transfer" as "diamond p-adic Langlands transfer"
SpdQp = Spa(Qcycl

p )/Z×p in LD�1 D̂�1
5. Universal Construction: D-Module/ Functor of Diamond Points
SpaC → D.
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Tate 's Thesis and 3d Mirror Symmetry
The global geometric Langlands correspondence is a conjectural equivalence

D. ( Bung cc)) ¥ Cohn ( Fleitas cc) )

In the cane G=G
"
= ①m this is a theorem of Lannon

,
Rothstein .

There is a less known local Langlands conjecture which claims

2. D (Bung CDT ) ) ⇐ 2Coh( Flatow CID ) )

us for
coherent sheaves of categories

de Rham sheaves of categories
• 2Wh (spec R) - R - linen categories

• There is a stack ✗dr= ✗/xxx Iq
=(R-mod , a) - modsuch frat

☐ (X ) = Con CXaR7 • more generally a stock is celled 1-affine if

ZDCXT = 26hr (Xdr)
Zcoh (X) 2- Couch , ☒) - mod

• Rr Bungcip) = BGCCTI) hour
• Plate CoD ) is 1 - affine

ZDCX) ¥ CDCGCCT)))
,
m*) - mod

In the case G- G- - ☒us Beilinsun - Dnhfeld proved

(Dimech) , m* ) ¥ ( Cohcflctom (B) , ☒ )
and hence the local Langlands conjecture .



let's understand Beilinsvs -Dunkeld 's result

FlatgCD) = { (P, D) I P principal G' - bundle on TD
,
D flat connection }

P
P

must be trivial D-d- A

= gtctDdt / etch)
← Ghcct)) acting via gauge transformations

g. A. = gag
-1
+ g-1dg

Rr G= On Levett - Tuvvitrn gives

Flatmate) 3 Flotow CIB] Res
.

✗ irregular
11 11

a# 12¥ ✗ Born Kerr ( Res : acct)7dt/aatDdt→ a) DR
it is also easy to see

tudou.at)) 2 am ✗ I ✗ K
,

✗ Ñ
IT, Can]

first congruence subgroup Arnel group
of big wilt vectors

Then Kevlar Ftp→ an) D(Ñ ) - 0

DCI)~=GhCBQn)

DCK,) I Ghc irregular) since tarts is day to +
-2
est
" ]

D. ( Gh) ¥ Con ( ft'/2) by Mellin Transform



Kapustin - Witten and Gaitsgoy -Frenkel showed that the geometric
Langlands correspondences one consequences of S- duality for

4d 84M
. Matrimonially , this gives rise to a large number

of compatibilities that must be satisfied .

For example work of Gaiolto - Witten shows that

5-duel 3d N=4 theory SCT) with
3d N=4 theory T with

→ Gt flower synrehyG-flower synrehy
←

generally not→ v1v1
preserved by

Hamiltonian G-space g- duel'm
Hamiltonian G-- space

mathematically expect

✗
A
E 2D(BungCID))

Haitian G-space
-0

GO ✗ -9 g* ✗ pg E
20h (Plato CIB) )
N

and for the gconende Langlands equivalence to exchange

✗ A ← so)B

✗ B
o_0 SOYA



Based on work of Costello 's students Elliott - Yoo and work of

It . - Dinette ,
Philsay You and I conjectured tub when

✗ =# Y we have

✗
A
-

D( Meps (B) Y) ) D. ( Maps (15,6) )

¥IF

✗ B
Z Coh (Mopsclbidr ,%))

D Ceh (Maps (Bar , BG))
-

D- lctgclt )

{ (pigs)TÉp with Ds=o }
• Horrendous ind - Cpw - finite type) stacks

• singularities are inherently infinite type

• need to invent new infinite type horological algebra

weaker conjectures here been made in work of

Braverman - Fiukelbevj - Ginzburg - Trcukih and in forthcoming
work of Ben-Zvi - Selcellorudls - Venkatesh - The former is notable

An providing proofs in some cases and the letter is notable
for providing the number frenetic interpretation •



Sam Raskin and I proved the following when G=Gl= Qin and

✗ = SCX) - TIA'
.

-h ( Tate 's thesis in de Khar context / Abelian 3d mirror symmetry )
There is an equivalence

☐certain ) ⇐ con ( maps (Bar , 1A
' /Qu) )

intertwining te naturel chins of ☐ ( lancet))) A- Cuh ( Flat,aClÑ) ) .

To get a feeling for this result look at

Flater ( IB ) ,zs . = CA
'
/2)¥ ✗ B. Gun G- Maps CIÑDR , 16m) Rus .

p ri
02 ✗€2

{d- i¥ }6- { select)) / (d-✗ ¥7s -_ o } = {att, ✗ c-z

Fun vid -pro structure on acct) ) we see fut

maps CÑar , A-
' 16-7 Res . =/Col 'm 11h ( -1/1 - - - -* + ) )/Kxann m

n m

pair of our theorem is a fully faithful embedding
☐(A1 ) - ☐ Cuh ( Mops ClD°dR , / on> R.s. )

which we believe to be new
.
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Definitions and fundamental constructions, work over C.

G = GLn(C), g = Lie(G) = gln
∼= g∗

B = invertible upper triangular matrices G, b = Lie(B)
b∗ = g/u+, u+ = strictly upper triangular matrices in g
G � G× b× Cn via g.(g′, r, i) = (g′g−1, r, gi),
B � G× b× Cn via b.(g′, r, i) = (g′, brb−1, bi),
G×B � G× b× Cn.
Take the derivative of G×B-action:
aG×B : Lie(G×B)︸ ︷︷ ︸

g×b

→ Γ(TG×b×Cn) ⊆ C[T ∗(G× b× Cn)],

aG×B(v, w)(g′, r, i) = d
dt(exp(tv), exp(tw)).(g′, r, i)|t=0,

and then dualize aG×B to obtain µG×B : T ∗(G× b× Cn)→ g∗ × b∗,

(g′, θ, r, s, i, j) 7→ (−θ + ij, g′θ(g′)−1 + [r, s]),
where v : g∗ � b∗.
G-action is free on µ−1

G×B(0), so we can take g′ = 1.
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Fundamental constructions.

Now, consider B� b× Cn via b.(r, i) = (brb−1, bi).
Take the derivative of B-action: aB : Lie(B)→ Γ(Tb×Cn) ⊆ C[T ∗(b× Cn)],
aB(w)(r, i) = d

dt(exp(tw).(r, i))|t=0 = ([w, r], wi), and then dualize aB to
obtain µB : T ∗(b× Cn)︸ ︷︷ ︸

b×b∗×Cn×(Cn)∗

→ b∗, (r, s, i, j) 7→ [r, s] + ij.

µ−1
B (0) ↪→ µ−1

G×B(0), (r, s, i, j) 7→ (1, ij, r, s, i, j).
Bijection between B-orbits on µ−1

B (0) and G×B-orbits on µ−1
G×B(0).

So µ−1
B (0)/B ∼= µ−1

G×B(0)/G×B as quotient stacks.
From symplectic geometry,

µ−1
G×B(0)/G×B ∼= T ∗((G× b× Cn)/(G×B)) ∼= T ∗((G×B b× Cn)/G)

= T ∗((g̃× Cn)/G), where g̃ ⊇ Ñ ,

g̃ = {(x, b) ∈ g×G/B : x ∈ b}, and Ñ = {(x, b) ∈ N ×G/B : x ∈ b}.
So µ−1

B (0)/B ∼= T ∗((g̃× Cn)/G).
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Fundamental constructions.

µB : T ∗(b× Cn)→ b∗ is the Borel moment map of our interest!
Affine quotient µ−1

B (0)//B := Spec(C[µ−1
B (0)]B), where

C[µ−1
B (0)] = C[T ∗(b× Cn)]

〈µB(r, s, i, j)〉 and

C[µ−1
B (0)]B = {f ∈ C[µ−1

B (0)] : b.f = f for all b ∈ B}.

µ−1
B (0)//B is a highly singular scheme.

Reminds us of µG : T ∗(g× Cn)→ g∗, (r, s, i, j) 7→ [r, s] + ij.
GIT quotient: µ−1

G (0)//detG ∼= µ−1
G (0)//det−1G ∼= Hilbn(C2),

Affine quotient: µ−1
G (0)//G ∼= Sn(C2) = (C2)n/Sn, and

the Hilbert-Chow morphism Hilbn(C2)
HC
� Sn(C2), which is a symplectic

resolution of singularities, i.e., Hilbn(C2) = BlI (SnC2), where I is an ideal
sheaf.
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Fundamental constructions.

Let χ : B → C \ {0} be a nontrivial character.

Work in progress, joint with Meral Tosun (for n ≤ 5):
1 construct µ−1

B (0)//χB � µ−1
B (0)//B explicitly,

2 identify µ−1
B (0)//χB with a noncommutative analog of the Hilbert scheme,

3 identify µ−1
B (0)//χB as a noncommutative blow-up of a closed subscheme

of µ−1
B (0)//B, and

4 identify µ−1
B (0)//B with a noncommutative analog of Sn(C2).

For the case when n ≥ 6 (or the case when we have more than 5 Jordan
blocks for a parabolic setting), we have a complete intersection problem!

Thank you! Are there any questions?
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D-simplicity of singular rings

Let R be a k-algebra and DR = DR/k the ring of k-linear
differential operators. We’ll study the question of when R
is a simple DR-module.

Definition
A ring R is called D-simple if it’s a simple DR-module (i.e.,
given any r ∈ R, there’s δ ∈ DR such that δ(r) = 1).

It is easily seen that polynomial rings over k, and more
generally smooth k-algebras, are D-simple.
Thus, one can think of D-simplicity as being a proxy for
smoothness.



Examples of D-simple rings

Differential operators are hard to compute explicitly, so
D-simplicity is known only in a few cases over C.
Most known examples are direct summands of regular
rings (e.g., invariant subrings of finite groups).

Things are better understood in characteristic p:

Theorem (Smith 1995)

An F-pure ring R is a simple DR-module if and only if R is
strongly F-regular.

In case this is meaningful: F-regularity is the
characteristic-p version of klt singularities.



D-simplicity as measure of singularity

The previous examples in characteristic 0 and the picture
in characteristic-p suggest that “nicer” singularities might
be D-simple.
For example, one can ask:

Question (Levasseur and Stafford 1989)

Let R be a C-algebra. If R has rational (or klt) Gorenstein
singularities, is R then D-simple?

Don’t worry about the definitions of these singularities:
both are ways of measuring “mildness” of singularities.



A negative answer

Our main theorem is a negative answer to this question:

Theorem (– 2020)

The ring R = C[x, y, z,w]/(x3 + y3 + z3 + w3) has rational/klt
Gorenstein singularities, but is not D-simple.

Note that ProjR is a smooth cubic surface; the theorem is
true for the coordinate ring of any smooth cubic surface.

For the rest of the talk, we’ll discuss where this example
comes from, and related examples.



Proof sketch

The idea is fairly simple:
• We look at rings occurring as homogeneous

coordinate rings of smooth projective varieties X.
• To get rings with “nice” singularities, one has to

impose restrictions on the canonical bundle ωX of X
(X must be Fano).
• We recall a criteria of Hsiao connecting D-simplicity to

“positivity” (bigness) of the tangent bundle TX.
• Finally, we prove that the tangent bundle of certain

Fano surfaces are not big.




