Thursday, August 12, 2021 2:00-3:00 EDT

2:00-2:07 Swaraj Pande, University of Michigan
2:08-2:15 Afshan Sadiq, University of Sussex
2:16 - 2:23 Jyoti Singh, Vnit, Nagpur
2:24-2:31 Sudeshna Roy, Chennai Mathematical Institute

Multiplicities of Jumping Numbers

Swaraj Pande
University of Michigan

D-modules, Group Actions, and Frobenius: Computing on Singularities, ICERM

August 12, 2021

Multiplier Ideals

Let X be a smooth variety over \mathbb{C}, Z a subscheme of X. Then,

- There is a decreasing family of ideals $\mathcal{I}(c \cdot Z)$ called multiplier ideals of Z parametrized by $c \in \mathbb{R}_{>0}$.
- $\mathcal{I}(c \cdot Z)$ quantifies the singularities of Z in X.
- Jumping numbers of Z in X are a discrete set of rational numbers where the family $\mathcal{I}(c \cdot Z)$ changes. These are interesting invariants of the singularity of Z.

Multiplicity of Jumping numbers

Suppose Z is a point scheme at a (closed) point $x \in X$. And let c be a jumping number of Z. Then,

- $\mathcal{I}(c \cdot Z)$ is co-supported at x.
- $\mathcal{I}(c \cdot Z) \varsubsetneqq \mathcal{I}((c-\varepsilon) \cdot Z)$ since c is a jumping number.
- Hence, we can "measure the jump at c " and define the multiplicity of c to be:

Main Theorem

Theorem 1

Let Z be a closed point subscheme in X and c be any jumping number of Z. Then the sequence of multiplicities $(m(c+n))_{n \in \mathbb{N}}$ is polynomial in n of degree less than the dimension X.

- This theorem is a finiteness property for the family $\mathcal{I}(c \cdot Z)$, similar to Skoda's theorem.
- This generalizes the work when X is a surface of Alberich-Carramiñana, Àlvarez Montaner, Dachs-Cadefau and González-Alonso.

Highest possible degree

Question

Let c be a jumping number of Z. Then what is the degree of $m(c+n)$? In particular, when is it the highest possible $(=\operatorname{dim} X-1)$?

Theorem 2

The degree of $m(c+n)$ is $d-1$ if and only if $c+d-1$ is a jumping number contributed by a Rees valuation of Z (where $d=\operatorname{dim} X$).

- This theorem says that the valuations needed to compute such jumping numbers are the most basic valuations associated to Z (from the divisors that appear on the normalized blow-up of Z).
- When Z is defined by a monomial ideal, all jumping numbers are of this form.

Thank you!

Thank you for your time!
Link to the arxiv preprint: https://arxiv.org/abs/2102.07080

Primary Decomposition of Binomial Modules

Afshan Sadiq
University of Sussex
as2470@sussex.ac.uk

August 11, 2021

History

- Primary decomposition of ideals plays a significant role in commutative algebra and is closely linked to algebraic geometry because it gives a decomposition of a variety into irreducible varieties.
- In case of modules it represents a module as intersection of primary modules whose annihilators have as radical a prime ideal.
- Lasker Noether decomposition theorem ensures that every module can be represented as intersection of a finite number of primary modules.
- In the present study we will discuss the techniques and methods of primary decomposition of submodules of free modules over a polynomial ring in n variables.
- There are three main algorithms to compute primary decomposition of ideals in polynomial rings over the rational numbers.
- The first algorithm was given by Gianni, Trager, Zacharias. In this algorithm the primary decomposition is done by reducing the problem to the zero-dimensional case. The ideas of Gianni, Trager, Zacharias were generalized by Rutman ([7]) to primary decomposition of submodules of a free module.
- Eisenbud, Huneke and Vasconcelos use homological methods to reduce the problem of the primary decomposition to the equidimensional case.
They characterize the intersection of primary modules of a module M of maximal dimension as the kernel of the canonical map $M \rightarrow E x t_{R}^{c}\left(E x t_{R}^{\subset}(M, R), R\right), c$ the codimension of M. The primary decomposition is described for ideals.
- The method of primary decomposition knowing the isolated prime ideals was given by Shimoyama, Yokoyama ([8]). In this method they introduced pseudo-primary ideals and extract the primary components from these ideals. An ideal is pseudo-primary if its radical is a prime ideal. This method was generalized for submodules of a free module by Idrees ([4]).
- With these methods we obtain a primary decomposition with possible redundant primary ideals.
- The method to compute the primary decomposition without having redundant primary ideals was given by Noro and Kawazoe([6]). They introduced saturated separating ideals, ideals obtained as the quotient of an ideal with its isolated primary component. This method is more effluent for some examples.
- The aim of this paper is to generalize the idea of Noro and Kawazoe to primary decomposition of modules.

Introduction

Let K be a field and $R=K\left[x_{1}, \ldots, x_{n}\right]$, let $e_{i}=\left(\begin{array}{c}\mathbf{0} \\ 1 \\ \mathbf{0}\end{array}\right)-i$ be the $i-t h$ unit vector in R^{m}. A monomial in R^{m} is an expression $x^{\alpha} e_{i}$, $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}$. A binomila is an expression of the form $a x^{\alpha} e_{i}+b x^{\beta} e_{j}, \alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}, a, b \in K, 1 \leq i, j \leq m$. A binomial module is a submodule of R^{m} generated by binomials. The aim of this paper is to prove that a binomial module has a primary decomposition into binomial primary modules and the associated primes are binomial ideals. The idea is to generalize the paper of Eisenbud and Strumfels ([2])

Lemma

Let $<$ be a monomial ordering on R suitably extended to R^{m} and $M \subseteq R^{m}$ a binomial module. Then the reduced Gröbner basis consist of binomials and the normal form of a term is again a term.

Corollary

Let M be a binomial module and m_{1}, \ldots, m_{k} monomials in R^{m}, $f_{1}, \ldots, f_{l} \in R$ such that $\sum f_{i} m_{i} \in M$. Let $f_{i j}$ be the terms of f_{i}. Then either $f_{i j} m_{i} \in M$ or there exist $f_{i^{\prime} j^{\prime}} \neq f_{i j}$ and $a \in K$ such that $f_{i j} m_{i}+a f_{i^{\prime} j^{\prime}} m_{i}^{\prime} \in M$

Corollary

Let M be a binomial module and m a monomial then $M: m$ is binomial.

Definition

A module $M \subseteq R^{m}$ is called cellular, if $M: R^{m}$ is a cellular ideal, i.e, every variable is a non-zero divisor mod $M: R^{m}$ or nilpotent. M is called a lattice module, if $M:\left(x_{1}, \ldots, x_{n}\right)=M$.

Remark

If M is a binomial than the cellular decomposition consist also of binomial modules. Therefore it is enough to prove that cellular binomial module have a binomial primary decomposition.

Lemma

Every binomial module $M \subseteq S^{m}$ is isomorphic to $S^{\prime} \bigoplus I_{1} \bigoplus \ldots \bigoplus I_{k}$, $I_{v} \subseteq S$ binomial ideals.

Corollary

Assume K is algebraically closed. The prime ideals associated to M are binomial.

Corollary

M has a primary decomposition of binomial modules.

Corollary

A binomial lattice module $M \subseteq R * m$ has a binomial primary decomposition and the associated primes are binomial.

References

Risenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Inventiones Mathematicae 110, 207-235 (1992).

Eisenbud, D.; Sturmfels, B.: Binomial ideals. Duke Mathematical Journal 84 (No. 1), 1-45 (1996).

Tianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation 6, 149-167 (1988).
R. Idrees, N.: Algorithms for primary decoposition of modules. Studia Scientiarum Mathematicarum Hungarica 48 (2), 227-246 (2011).

T- Gerhard Pfister, G.; Sadiq, A.; Steidel, S.: An Algorithm for Primary Decomposition in Polynomial Rings over the Integers. Central European Journal of Mathematics Vol. 9, No. 4, (2010) 897-904

T- Kawazoe, T., Noro, M., Algorithms for computing a primary ideal decomposition without producing intermediate redundant components, Journal of Symbolic Computation 46 (2011) 11581172
E.W. Rutman: Gröbner bases and primary decomposition of modules. J. Symbolic Computation (1992)14, 483-503.

The End

Derived fuctors of graded local cohomology modules

Jyoti Singh
VNIT, Nagpur
(joint work with Prof. Tony J. Puthenpurakal)

D-modules, Group Actions, and Frobenius: Computing on Singularities ICERM

August 09-13, 2021

Motivation

- Let $R=K\left[x_{1}, \ldots, x_{n}\right]$. It is well known that $H_{m}^{i}\left(H_{l}^{j}(R)\right)$, for an ideal $/$ of R, is isomorphic to a direct sum of a finite number of copies of E (the ungraded injective hull of R / m).
- Huneke-Sharp, Trans. Amer. Math. Soc. 1993: In the case $\operatorname{char}(K)>0$
- Lyubeznik, Invent. Math. 1993: In the case $\operatorname{char}(K)=0$.
- Ma- Zhang, Math. Res. Lett. 2014: Every graded F-module is Eulerian. $\tau(R)$ is Eulerian. $H_{m}^{i}(\tau(R)) \cong \oplus E(n)^{c}$.

Question

What happens when charK $=0$?

Weyl Algebra and D-module

- The $n^{\text {th }}$ Weyl algebra, denoted by $A_{n}(K)\left(\right.$ or $\left.A_{n}\right)$, is defined as the K subalgebra $K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ of $E n d_{K}(K[X])$ generated by the K linear endomorphisms x_{1}, \ldots, x_{n} and $\partial_{1}, \ldots, \partial_{n}$ of $K[X]$ given by $x_{i}(f)=$ $x_{i} f$ and $\partial_{i}(f)=\frac{\partial f}{\partial x_{i}}$ for all $f \in K[X]$.
- R_{f} is D-module.
- Check complex $0 \rightarrow R \rightarrow \oplus R_{f_{i}} \rightarrow \ldots \rightarrow R_{f_{1}, \ldots, f_{k}} \rightarrow 0$ is a complexes of D-modules.
- If M is a D-module, so is $C(\underline{f}, M)$
- If M is a D-module, so is local cohomology modules $H_{\underline{f}}^{i}(M)$.
- A finitely generated D-module M is said to be holonomic if either $M=0$ or $d(M)=n$

Generalized Eulerian $A_{n}(K)$-modules

$$
\mathcal{E}_{n}:=X_{1} \partial_{1}+\ldots+X_{n} \partial_{n} .
$$

Definition

Let M be a graded $A_{n}(K)$-module and z be a homogeneous element of M. Then M is said to be Eulerian if $\mathcal{E}_{n} z=|z| \cdot z$.

Definition

A graded $A_{n}(K)$-module M is said to be generalized Eulerian if for a homogeneous element z of M there exists a positive integer a such that $\left(\mathcal{E}_{n}-|z|\right)^{a} \cdot z=0$.

Property 1 (Puthenpurakal)
Let $0 \rightarrow M_{1} \xrightarrow{\alpha_{1}} M_{2} \xrightarrow{\alpha_{2}} M_{3} \rightarrow 0$ be a short exact sequence of graded $A_{n}(K)$-modules. Then M_{2} is generalized Eulerian if and only if M_{1} and M_{3} are generalized Eulerian.

Theorem [Puthenpurakal,_--]

Let M be a nonzero generalized Eulerian $A_{n}(K)$-module. Then $S^{-1} M$ is also a generalized Eulerian $A_{n}(K)$-module for each homogeneous system $S \subseteq R$.

Corollary [Puthenpurakal,---]
Let $I=\left(f_{1}, \ldots, f_{s}\right)$ be a homogeneous ideal in R with f_{i}^{\prime} s are homogeneous polynomials in R. Let M be a nonzero generalized Eulerian $A_{n}(K)$-module. Then $H_{l}^{i}(M)$ is a generalized Eulerian $A_{n}(K)$-module.

Theorem [Puthenpurakal,_--]
Let K be a field of characteristic zero. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$ be standard graded. Let \mathcal{T} be a graded Lyubeznik functor on ${ }^{*} \operatorname{Mod}(R)$. Then $\mathcal{T}(R)$ is a generalized Eulerian $A_{n}(K)$-module.

Corollary [Puthenpurakal,_--]
Let K be a field of characteristic zero. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$ be standard graded. Let \mathcal{T} be a graded Lyubeznik functor on ${ }^{*} \operatorname{Mod}(R)$. Then $H_{\mathfrak{m}}^{i} \mathcal{T}(R)=E(n)^{a_{i}}$ for some $a_{i} \geq 0$.

Theorem

Fix $\nu \geqslant 0$. Then the graded K-vector space $\operatorname{Tor}_{\nu}^{A_{n}(K)}\left(M^{\sharp}, N\right)$ is concentrated in degree $-n$, i.e., $\operatorname{Tof}_{\nu}{ }^{A_{n}(K)}\left(M^{\sharp}, N\right)_{j}=0$ for all $j \neq-n$.

Conjecture
Fix $\nu \geqslant 0$. The graded K-vector space $E x t_{A_{n}(K)}^{\prime}(M, N)$ is concentrated in

THANK YOU

On derived functors of graded local cohomology modules - II

Sudeshna Roy
Chennai Mathematical Institute, India
Joint work with Tony J. Puthenpurakal (IIT Bombay),
and Jyoti Singh (VNIT Nagpur)

|[еГா

D-modules, Group Actions, and Frobenius: Computing on Singularities

August 9, 2021

Notations and definitions

K : a field of characteristic zero.
$R:=K\left[X_{1}, \ldots, X_{n}\right]$ is a polynomial ring over K.
${ }^{*} E_{R}(K)$: the graded injective hull of K over R.
$(-)^{\vee}={ }^{*} \operatorname{Hom}_{K}(-, K)$: the graded Matlis dual.
$\mathbf{C}(\underline{f}, R)$: the Čech complex on R w.r.t. $\underline{f}:=f_{1}, \ldots, f_{r}$.
$H_{I}^{i}(R)=H^{i}(\mathbf{C}(\underline{f}, R))$: the $i^{\text {th }}$ local cohomology module of R w.r.t. I.
$A_{n}(K)=R\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle: n^{\text {th }}$-Weyl algebra over K, where $\partial_{i}=\partial / \partial X_{i}$.
$\mathbf{K} \bullet\left(\underline{\partial} ; H_{I}^{i}(R)\right)$: the de Rham complex, where $\underline{\partial}:=\partial_{1}, \ldots, \partial_{n}$.
$H^{\nu}(\underline{\partial} ; W)=H^{\nu}\left(\mathbf{K}^{\bullet}(\underline{\partial} ; W)\right)$: the $\nu^{\text {th }}$ de Rham cohomology module.
M : a left $A_{n}(K)$-module.
M^{\sharp} : the standard right $A_{n}(K)$-module associated to M.

- A f.g. left $A_{n}(K)$-module is holonomic if it is zero or its Bernstein dimension is n.

Motivation

Consider standard gradings on both R and $A_{n}(K)$.
Fix $i, j \geq 0$. Let $I, J \subseteq R$ be homogeneous ideals.
$>\left(\right.$ Lyubeznik, 1993). $H_{I}^{i}(R)$ are holonomic.
$>($ Björk $) . H^{\nu}\left(\underline{\partial} ; H_{I}^{i}(R)\right)$ are f.d. graded K-vector spaces $\forall \nu \geq 0$.
$>$ (Puthenpurakal, 2015). For all $\nu \geq 0$,

$$
H^{\nu}\left(\underline{\partial} ; H_{I}^{i}(R)\right)_{l}=0 \quad \text { for } l \neq-n .
$$

\star Notice $H^{\nu}\left(\underline{\partial} ; H_{I}^{i}(R)\right) \cong \operatorname{Tor}_{n-\nu}^{A_{n}(K)}\left(H_{\{0\}}^{0}(R)^{\sharp}, H_{I}^{i}(R)\right)$.
$>$ (Puthenpurakal-Singh, 2018).For all $\nu \geq 0$,

$$
\operatorname{Tor}_{\nu}^{A_{n}(K)}\left(H_{J}^{j}(R)^{\sharp}, H_{I}^{i}(R)\right)_{l}=0 \quad \text { for } l \neq-n .
$$

$>($ Björk $)$. For all $\nu \geq 0, \operatorname{Tor}_{\nu}^{A_{n}(K)}\left(H_{J}^{j}(R)^{\sharp}, H_{I}^{i}(R)\right)$ and
$\operatorname{Ext}_{A_{n}(K)}^{\nu}\left(H_{J}^{j}(R), H_{I}^{i}(R)\right)$ are f.d. graded K-vector spaces.

Main result

Theorem (Puthenpurakal, - , and Singh, 2020).
For all $\nu \geq 0$; the graded K-vector space $\operatorname{Ext}_{A_{n}(K)}^{\nu}\left(H_{J}^{j}(R), H_{I}^{i}(R)\right)$ is concentrated in degree 0, i.e.,

$$
\operatorname{Ext}_{A_{n}(K)}^{\nu}\left(H_{J}^{j}(R), H_{I}^{i}(R)\right)_{l}=0 \quad \text { for } l \neq 0 .
$$

Question. Let M, N be holonomic $A_{n}(K)$-modules. $I s * \operatorname{Ext}_{R}^{\nu}(M, N)$ holonomic?
\star Need not be true.
$>$ (Switala-Zhang, 2018). Let $n \geq 2$. Take $M=H_{\left(X_{1}\right)}^{1}(R)$. Then M is holonomic, but ${ }^{*} \operatorname{Hom}_{R}\left(M(-n),{ }^{*} E_{R}(K)\right)$ is not holonomic.

Application

Corollary. If M and N are graded holonomic generalized Eulerian left $A_{n}(K)$-modules, then any extension

$$
\eta_{i}: 0 \rightarrow N(i) \rightarrow Y \rightarrow M \rightarrow 0
$$

splits for all $i \neq 0$.
Recall. If N is non-zero GE, then the shifted module $N(i)$ is not GE for $i \neq 0$.

Techniques used

We say M is strongly generalized Eulerian (SGE) if for all homogeneous element m of M, there exists $a>0$ such that

$$
\left(\sum_{i=1}^{n} X_{i} \partial_{i}-\operatorname{deg} m\right)^{a} \cdot m=0 .
$$

Examples. (i) $A_{n}(K) / J$ if $\mathcal{E}_{n}^{a} \in J$ for some $a>0$, (ii) $H_{I}^{i}(R)$.

* We do not have an example of a generalized Eulerian (GE) module which is not SGE.
$>$ If M is a f.g. $A_{n}(K)$-module, then M is GE $\Longleftrightarrow M$ is SGE.

Thank

 you