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A SHORT LIST OF PROBLEMS FOR THE CONFERENCE:
“D-MODULES, GROUP ACTIONS, AND FROBENIUS: COMPUTING ON

SINGULARITIES”

YAIRON CID-RUIZ

ABSTRACT. This document contains a short list of problems around the general idea of “describing non-
reduced schemes with the use of differential operators”.

1. INTRODUCTION

The problem of characterizing ideal membership with differential conditions was first addressed by
Gröbner in [11]. He derived such characterizations for ideals that are primary to a rational maximal ideal
[12, pages 174-178], and he suggested that the same program could be carried out for any primary ideal
[10, §1].

Despite this early algebraic interest by Gröbner, a complete description of primary ideals in terms
of differential operators was first obtained by analysts in the Fundamental Principle of Ehrenpreis and
Palamodov ([8,14]). At the core of the Fundamental Principle, one has the following theorem by Palam-
odov.

Theorem 1.1 (Palamodov). Let R be a polynomial ring R = C[x1, . . . ,xn] over the complex numbers C,
p ∈ Spec(R) be a prime ideal, and Q ⊂ R be a p-primary ideal. Then, there exist differential operators
A1, . . . ,Am ∈ R〈∂x1 , . . . ,∂xn〉 such that Q= {f ∈ R |Ai • f ∈ p for 1 6 i6m}.

Following the terminology of Palamodov, the differential operators A1, . . . ,Am are commonly called
Noetherian operators for the p-primary ideal Q. Subsequent algebraic approaches to characterize pri-
mary ideals (and, later, arbitrary ideals) with the use of differential operators were given in [1–6,13]. All
the results that are presented subsequently are valid for modules, but for simplicity of notation, we stick
to the case of ideals. The theorem below extends Palamodov’s theorem to quite nonrestrictive settings.

Theorem 1.2 ([4]). Let A be a Noetherian domain and R be an A-algebra essentially of finite type. Let
p ∈ Spec(R) be a prime ideal such that p∩A = 0, and Q ⊂ R be a p-primary ideal. Then, there exist
differential operators A1, . . . ,Am ∈ DiffR/A(R,R/p) such that Q= {f ∈ R |Ai(f) = 0 for 1 6 i6m}.

Additionally, if R is formally smooth over A, then there exist A1, . . . ,Am ∈ DiffR/A(R,R) such that
Q= {f ∈ R |Ai(f) ∈ p for 1 6 i6m}.

Let k be a field and R be a k-algebra essentially of finite type. To describe arbitrary ideals instead of
just primary ideals the following notion was recently introduced. Our definition rests on localizing along
associated prime ideals pi, and recovering the localization Ipi

of the ideal.

Definition 1.3. Let I ⊂ R be an ideal with Ass(R/I) = {p1, . . . ,pk} ⊂ Spec(R). A differential primary
decomposition of I is a list of pairs (p1,A1), . . . ,(pk,Ak), where Ai ⊂ DiffR/k(R,R/pi) is a finite set of
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differential operators, such that the following equation holds for each p ∈ Ass(R/I):

Ip =
⋂

16i6k
pi⊆p

{
f ∈ Rp | δ ′(f) = 0 for all δ ∈ Ai

}
.

Here δ ′ ∈ DiffRp/k(Rp,Rp/piRp) denotes the localization of an operator δ ∈ Ai.

We have the following notion of multiplicity, which will provide a measure of “complexity from a
differential point of view”.

Definition 1.4. For an ideal I⊂ R, its arithmetic multiplicity is the positive integer

amult(I) :=
∑

p∈Ass(R/I)

lengthRp

(
H0
p (Rp/IRp)

)
=

∑
p∈Ass(R/I)

lengthRp

((
IRp :Rp (pRp)

∞)
IRp

)
.

In [15], the length inside the sum was denoted multI(p) and called the multiplicity of I along p. It is the
length of the largest ideal of finite length in the ring Rp/IRp.

The next theorem is the main result regarding differential primary decompositions. An ideal I always
has a differential primary decomposition whose total number of operators is equal to the arithmetic
multiplicity. Moreover, amult(I) is a lower bound on the size of any differential primary decomposition.

Theorem 1.5 ([6]). Assume that k is a perfect field. Fix an ideal I ⊂ R with Ass(R/I) = {p1, . . . ,pk} ⊂
Spec(R). The size of a differential primary decomposition is at least amult(I), and this upper bound is
tight. More precisely:

(i) I has a differential primary decomposition (p1,A1), . . ., (pk,Ak) such that |Ai|= multI(pi).
(ii) If (p1,A1), . . ., (pk,Ak) is a differential primary decomposition for I, then |Ai| > multI(pi).

In this document, we describe some problems in a similar vein to the above results.

2. SOME PROBLEMS

(1) Implementation of an algorithm to compute differential primary decompositions in the posi-
tive characteristic case. Right now, in Macaulay2 [3,9] one can compute a differential primary decom-
position for any ideal (actually, for any submodule of a free module) in a polynomial ring over a field of
characteristic zero (as proposed in [6]). Therefore, the question is: to implement the analog algorithm
in the positive characteristic case. The implementation will be quite a bit more cumbersome than in the
characteristic zero case, but in principle all techniques should be easily adaptable. Below, to wit, we have
a Macaulay2 session where a differential primary decomposition is computed for a module.

Example 2.1 ([2, Example 6.2]). Let R= Q[x1,x2,x3] and U⊆ R2 be the R-submodule

U= imageR

[
x2

1 x1x2 x1x3

x2
2 x2x3 x2

3

]
.

We compute a primary decomposition and a minimal differential primary decomposition for U:
Macaulay2, version 1.17.2.1

i1 : load "modulesNoetherianOperators.m2";

i2 : printPD = M -> apply(primaryDecomposition M, Q -> trim image(gens Q | relations Q));

i3 : R = QQ[x_1,x_2,x_3];
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i4 : U = image matrix {{x_1^2,x_1*x_2,x_1*x_3}, {x_2^2,x_2*x_3,x_3^2}};

i5 : M = R^2 / U;

i6 : L1 = printPD M

o6 = {image | 0 x_1 |, image | x_1 x_2^2 0 |, image | x_3 x_2^2 0 x_1x_2 x_1^2 |}

| 1 0 | | x_3 x_3^2 x_2^2-x_1x_3 | | 0 0 x_3^2 x_2x_3 x_2^2 |

o7 : all(L1, isPrimary_M) and U == intersect L1

o7 = true

i8 : L2 = differentialPrimaryDecomposition U

2

o8 = {{ideal x , {| 1 |}}, {ideal(x - x x ), {| -x_3 |}}, {ideal (x , x ), {| 0 |}}}

1 | 0 | 2 1 3 | x_1 | 3 2 | dx_3 |

o8 : List

i9 : U == intersect apply(L2, getModuleFromNoetherianOperators)

o9 = true

i10 : amult U

o10 = 3

Notice that amult(U) = 3 is the size of the computed differential primary decomposition.

(2) Computing a differential primary decomposition for your favorite family of ideals. The ques-
tion is: to choose a nice family of ideals and give an explicit description of a minimal differential primary
decomposition. Nice examples could be: edge ideals, binomial edge ideals, monomial ideals, toric ideals
or ideals associated to subspace arrangements ([7]). Another example, already solved in [6, Theorem
7.1], [2, Theorem 5.3], is the characterization of primary ideals coming from the join construction as
ideals that can be described with differential operators with constant coefficients.

(3) Drop the perfect field assumption in Theorem 1.5. Note that an ideal always has a differential
primary decomposition by invoking Theorem 1.2 on the components of a primary decomposition (see
[6, Remark 3.4]). So, the important question is: “what is the minimum size of a differential primary
decomposition?”. When the field k is not perfect, then the minimum size can be higher that the arithmetic
multiplicity (see [4, Example 4.8]). For a non perfect field k, the minimum size should be a lot less clean
than in Theorem 1.5, as it should be related to the inseparable degree of the residue fields of the associated
primes over k.

(4) Extending the representation theorem of [5]. The paper [5] contains a “representation theorem”
that characterizes primary ideals via three different but closely related objects (see [6, Theorem 2.1]).
Of particular interest is the parametrization of primary ideal with the use of punctual Hilbert schemes.
These results were extended afterward for the case of modules in [2]. The question is: to obtain a
parameter space of an arbitrary ideal Iwith the fixed multiplicities multI(pi) along the associated primes
Ass(R/I) = {p1, . . . ,pk} of I. For the case of embedded associated primes, the answer (if it exists) should
be some sort of flag Hilbert schemes. Of course, the case where there is no embedded associated prime
the answer follows directly from [6, Theorem 2.1].
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ON THE BERNSTEIN–SATO POLYNOMIALS OF ROOTS OF POLYNOMIALS

Think of the n+ 1-dimensional affine space (n > 1) as X = SymnW with dimW = 2. We let x, y be
a basis of W , and xn, xn−1y, . . . , xyn−1, yn a basis of X, with respective coordinates xn, xn−1, . . . , x1, x0,
so that we identify C[X] = C[x0, . . . , xn].

We denote by r = r(x0, . . . , xn) an algebraic function (on some domain in X) that satisfies

xn · rn + xn−1 · rn−1 + · · ·+ x1 · r + x0 = 0.

Throughout f ∈ C[X] denotes the discriminant of the polynomial above, with deg f = 2n− 2.
Let g be the Lie algebra of G = GL(W ), Ug its universal enveloping algebra. The natural action of G

on X gives the Lie algebra map g→ DX , and we pick the following basis of vector fields for its image:

g11 = x1∂1 + 2x2∂2 + · · ·+ nxn∂n, g12 = nx0∂1 + (n− 1)x1∂2 + · · ·+ xn−1∂n,

g21 = x1∂0 + 2x2∂1 + · · ·+ nxn∂n−1, g22 = nx0∂0 + (n− 1)x1∂1 + · · ·+ xn−1∂n−1.

Problem. The goal is to find the Bernstein–Sato polynomial of the algebraic function h = xn−1+nxn·r.
(a) Show that h is G-finite (i.e. Ug · h is a finite-dimensional G-module), so that DX · h is a G-

equivariant DX -module.
(b) [K. Mayr ’37] Show that the following operators annihilate r:

g11 + 1, g22 − 1, ∂i∂j − ∂k∂l with i+ j = k + l.

(c) Prove that the following operators generate the annihilating ideal of h in DX :

g11−n+ 1, g n−1
12 , g21, g22−1, (∂i∂j+1−∂i+1∂j)

1+δj,n−1 , for 0 ≤ i < j ≤ n−1 (δ is the Kronecker delta).

In fact, DX ·h is a simple (regular, holonomic) DX -module and its Fourier transform is isomorphic
to the local cohomology module Hn−1

Z (C[X]), where Z ⊂ X is the Veronese cone.
(d) Show that the singular locus of DX · r is defined by xn · f , whereas that of DX · h by f .
(e) Compute the Bernstein–Sato polynomial bh(s) of h.

Recall that the Bernstein–Sato polynomial of h is the minimal monic polynomial bh(s) ∈ C[s] for which
there exists an operator P ∈ DX [s] such that

P · fs+1h = bh(s) · fsh.
It is known that the roots of bh(s) are rational, and that −1 and −3/2 are roots of bh(s) (for n > 2).
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A FEW QUESTIONS

MIRCEA MUSTAŢĂ

1. Questions about b-functions

LetX be a smooth, n-dimensional complex algebraic variety, P ∈ X a point, and f1, . . . , fr ∈
OX(X) nonzero, with fi(P ) = 0. Let f =

∏r
i=1 fi and we consider the Bernstein-Sato poly-

nomial bf,P (s) of f at P . We assume that f1, . . . , fr form a regular sequence at P .

Fact : One can show that under the above assumptions, (s+ 1)r divides bf,P (s).

Definition 1.1. We define α̃P (f1, . . . , fr) to be equal to the negative of the largest root of
bf,P (s)/(s+ 1)r. Note that this is equal to lctP (f) if lctP (f) < 1.

Remark 1.2. Note that if r = 1, then we recover the minimal exponent of f at P .

Remark 1.3. One can show that if f1, . . . , fr do not form a regular sequence at P , then
lctP (f) < 1. Therefore it is natural to put α̃P (f1, . . . , fr) = lctP (f) in this case.

Question 1.4. Suppose that f1, . . . , fr ∈ C[x1, . . . , xn] are homogeneous, with deg(fi) = di,
defining a smooth complete intersection subvariety of Pn−1. What is α̃P (f1, . . . , fr)?

The following are some more theoretical questions:

Question 1.5. Suppose that X = X1 × . . .×Xr, P = (P1, . . . , Pr), and fi = gi ◦ pri, where
gi ∈ OXi(Xi). Is it true that bf,P (s) =

∏r
i=1 bgi,Pi(s)? This would imply

α̃P (f1, . . . , fr) = min
i
α̃Pi(gi).

It is certainly clear that bf,P (s) divides
∏r

i=1 bgi,Pi(s) and thus α̃P (f1, . . . , fr) ≥ mini α̃Pi(gi).

Question 1.6. By definition of α̃P (f1, . . . , fr), this is infinite precisely when we have bf,P (s) =
(s + 1)r. For example, this is the case if the divisors V (fi) are smooth and intersect trans-
versely. Does the converse hold, that is, if bf,P (s) = (s + 1)r, can we say that in some
neighborhood of P , the divisors V (fi) are smooth and intersect transversely?

Question 1.7. Is it true that if α̃P (f1, . . . , fr) > 1, then V (f1, . . . , fr) has rational singular-
ities at P? Is the converse true: if V (f1, . . . , fr) has rational singularities at P , do we have
α̃P (f1, . . . , fr) > 1 if we replace f1, . . . , fr by general linear combinations?

2. A question about the Briançon-Skoda theorem

Let X be a smooth n-dimensional algebraic variety over an algebraically closed field k.
Let f ∈ OX(X) be nonzero and Jf the Jacobian ideal of f (if on U ⊆ X open we have local

algebraic coordinates x1, . . . , xn, then Jf is generated in U by ∂f
∂x1

, . . . , ∂f
∂xn

).

A well-known result due to Briançon-Skoda (for k = C) and to Lipman-Teissier in the
general case says that fn ∈ Jf . In the recent preprint [JKSY21] one gives an improvement,

when k = C, in terms of the minimal exponent α̃(f): it is shown that fk ∈ Jf if k ≥
n− d2̃α(f)e+ 1. For example, if lct(f) > 1

2 , then fn−1 ∈ Jf and if the hypersurface defined

by f has rational singularities, then fn−2 ∈ Jf .
1
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Question 2.1. Suppose now that char(k) = p > 0.

i) iI fpt(f) > 1
2 , do we have fn−1 ∈ Jf?

ii) If the hypersurface defined by f has F -rational singularities, do we have fn−2 ∈ Jf?

References
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