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1. Hearing the Shape of a Room

Given is a room:

I arrangement of planar “walls” (ceilings, floors,. . . );

I not necessarily convex;

I not necessarily closed;

I position and number of walls is unknown.

We want to use sound to determine the walls.
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1. Hearing the Shape of a Room

We use 4 microphones:

I known positions m1,m2,m3,m4 2 R3;

I placed on a drone.

An omnidirectional speaker emits a short pulse:

I high-frequency so ray acoustics approximation holds;

I 1st order echoes: pulses heard after they bounce o↵ the walls;

I 2nd order echoes: bounced o↵ pulses bounce again;

I etc.

3 / 34



1. Hearing the Shape of a Room

Represent each wall W by a mirror point s 2 R3

L

s1

s2ss

m1 m2

m3 m4

W1

W2

Virtually, sound comes from mirror points s1 and s2.
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1. Hearing the Shape of a Room

Suppose microphones are at positions mi 2 R3, i = 1, 2, 3, 4.

Fact 1
The microphones are coplanar if and only if det(M) = 0 with

M :=

0

BB@
m1 m2 m3 m4

1 1 1 1

1

CCA 2 R4⇥4.
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1. Hearing the Shape of a Room

Given 4 non-planar microphones mi 2 R3 and a wall s 2 R3.

sss

m1 m2

m3 m4

Fact 2

I Let M̃ 2 R3⇥4 be the upper 3⇥ 4-part of (M�1)T .

I s can be computed from the squared distances
di := ks�mik2 as

s =
1

2
M̃ ·

0

B@
km1k2 � d1

...
km4k2 � d4

1

CA .
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1. Hearing the Shape of a Room

Let L 2 R3 be the position of the loudspeaker.

L sss

m1 m2

m3 m4

Fact 3

I Wall s has normal vector s� L and contains point 1
2(s+ L).

I Four non-collinear points on the wall are found by intersecting
line between s and mi (1  i  4) with this plane.

I Points given by

(1� ⌧i )s+ ⌧imi with ⌧i =
ks� Lk2

2hs� L, s�mi i
.
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1. Hearing the Shape of a Room

Summary: if room has only one wall s

I Time between pulse emitted and first order echoes gives
microphone-wall distance

di = kmi � sk2.

I Reconstruct s from m1,m2,m3,m4 and d1, d2, d3, d4.

I Reconstruct wall normal from s and L.

I Reconstruct 4 points on wall by intersecting wall plane with
line from s to mi , i = 1, . . . , 4.
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1. Hearing the Shape of a Room

If room has several walls sj

I Each microphone mi receives echoes from Ki walls.

I Distance to each of the walls computed from elapsed time.

I Let Di = {kmi � sjk2}Ki
j=1, be the multiset of (unlabeled)

distances from mi to the walls it hears. Set

D = D1 ⇥D2 ⇥D3 ⇥D4.

I Want to reconstruct the walls from D.
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1. Hearing the Shape of a Room

The challenge: sorting the echoes
(= labeling the distances )

I Determining whether four distances (d1, d2, d3, d4) 2 D could
correspond to one wall,

I i.e., determine if there exists a wall s s.t.

kmi � sk2 = di , for i = 1, 2, 3, 4.
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2. Echo Sorting Criterion

Five Point Echo Sorting Criterion1:
Let m1,m2,m3,m4,m5 2 R3.
Let Di ,j = kmi �mjk2, i , j = 1, 2, 3, 4, 5 and u1, . . . , u5 2 R. Let

E :=

0

BBBBB@

0 u1 · · · u5
u1 D1,1 · · · D1,5
...

...
...

u4 D4,1 · · · D4,5

u5 D5,1 · · · D5,5

1

CCCCCA
and gE (u1, u2, . . . , u5) := det(E ).

Then gE (d1, d2, d3, d4, d5) = 0 when d1, d2, d3, d4, d5 correspond to
same wall s.

1
Dokmanić et al., “Acoustic echoes reveal room shape”.
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2. Echo Sorting Criterion

Why?
Because if x1, . . . , xk 2 Rn, then the Euclidean Distance Matrix

0

BBBBB@

kx1 � x1k2 kx1 � x2k2 · · · kx1 � xkk2
kx2 � x1k2 kx2 � x2k2 · · · kx2 � xkk2
kx3 � x1k2 kx3 � x2k2 · · · kx3 � xkk2

...
...

...
kxk � x1k2 kxk � x2k2 · · · kxk � xkk2

1

CCCCCA
2 Rk⇥k

has rank at most n + 2.
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2. Echo Sorting Criterion

Four Microphone Echo Sorting Criterion:
Let Di ,j := kmi �mjk2 and let u1 . . . u4 2 R. Let

D :=

0

BBBBB@

0 u1 · · · u4 1
u1 D1,1 · · · D1,4 1
...

...
...

...
u4 D4,1 · · · D4,4 1
1 1 · · · 1 0

1

CCCCCA
and fM(u1 . . . u4) := det(D).

(1)
Then fM(d1 . . . d4) = 0 when d1, d2, d3, d4 correspond to the same
wall s.
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2. Echo Sorting Criterion

Why?

I Set m0 = s.

I Then

detD = det

0

BBBBB@

D0,0 D0,1 · · · D0,4 1
D1,0 D1,1 · · · D1,4 1
...

...
...

...
D4,0 D4,1 · · · D4,4 1
1 1 · · · 1 0

1

CCCCCA

is the Cayley-Menger determinant of the 5-simplex
m0,m1,m2,m3,m4.
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3. Wall Reconstruction Algorithm

The Algorithm

1. For i = 1, . . . , 4, collect times of echoes recorded by the ith
microphone in set Ti .

2. Set Di := {c2(t � t0)2 | t 2 Ti} (i = 1, . . . , 4), where c speed
of sound, t0 time of sound emission.

3. FOR (d1, d2, d3, d4) 2 D1 ⇥D2 ⇥D3 ⇥D4 DO
3.4 IF fM(d1, . . . , d4) = 0 THEN

3.4.5 Compute mirror point s from (d1, . . . , d4).
3.4.6 Compute four non-collinear points on the wall with mirror

point s
3.4.7 OUTPUT data of this wall.
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3. Wall Reconstruction Algorithm

Observe:

I Algorithm reconstructs all walls heard by 4 microphones.

I Algorithm could reconstruct walls that are not there (ghost
walls).
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3. Wall Reconstruction Algorithm

Example of Ghost wall

Wghost
L

m1

m2

m3

W1

W2 W3
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3. Wall Reconstruction Algorithm

How to prevent ghost walls?

Case of Generic Walls

I Polynomial fM(u1, u2, u3, u4) unchanged when moving walls.

I If fM(km1 � s1k2, km2 � s2k2, km3 � s3k2, km4 � s4k2) = 0
with s1, s2, s3, s4 not all equal, then move walls si ’s slightly to
avoid zero set.

I After moving walls, algorithm will only reconstruct walls that
are there.

So can hear shape of room with walls in generic positions.
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3. Wall Reconstruction Algorithm

Want to consider potentially non-generic wall configurations
e.g., parallel/perpendicular walls.

Can we move the drone slightly instead of the walls?

Definition
Microphones (or drone) are in good position if wall detection
algorithm detects no ghost walls; else they are in bad Position.
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3. Wall Reconstruction Algorithm

Theorem (B.-Kemper)

The set of bad drone positions lies in a subspace of dimension  5
within the 6-dimensional space of possible drone positions.

) If drone in generic position, our algorithm only reconstructs
walls that are there.

Conclusion
A drone in generic position can hear the shape of a room from
echoes!

20 / 34



4. Related Problem: Shape from Pairwise Distances

Given the pairwise distances

�
kxi � xjk2

 k
i ,j=1

can we reconstruct the points x1, . . . , xk 2 Rn?
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4. Related Problem: Shape from Pairwise Distances

The labeled case

I Reconstruct x1, . . . , xk 2 Rn from labeled distances
dij = kxi � xjk2.

Here, matrix of pairwise distances is known

0

BBBBB@

kx1 � x1k2 kx1 � x2k2 · · · kx1 � xkk2
kx2 � x1k2 kx2 � x2k2 · · · kx2 � xkk2
kx3 � x1k2 kx3 � x2k2 · · · kx3 � xkk2

...
...

...
kxk � x1k2 kxk � x2k2 · · · kxk � xkk2

1

CCCCCA
2 Rk⇥k
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4. Related Problem: Shape from Pairwise Distances

The labeled case

I Reconstruct x1, . . . , xk 2 Rn from labeled distances
dij = kxi � xjk2.

Solution

I Matrix � =
�
kxi � xkk2 � kxj � xkk2 � kxi � xjk2

�
factors as

� = (xi � xk)
T (xj � xk).

I singular value decomposition of � = QT⌃Q yields solution

0

BBB@

xi � xk
0
...
0

1

CCCA
=

p
⌃Q
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4. Related Problem: Shape from Pairwise Distances

The unlabeled case

I Reconstruct x1, . . . , xk 2 Rn from multiset of distances
{dij = kxi � xjk2}.

Here, matrix of pairwise distances is known up to a shu✏ing

0

BBBBB@

kx1 � x1k2 kx1 � x2k2 · · · kx1 � xkk2
kx2 � x1k2 kx2 � x2k2 · · · kx2 � xkk2
kx3 � x1k2 kx3 � x2k2 · · · kx3 � xkk2

...
...

...
kxk � x1k2 kxk � x2k2 · · · kxk � xkk2

1

CCCCCA
2 Rk⇥k
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4. Related Problem: Shape from Pairwise Distances

Reconstructing a point configuration from unlabeled distances
is also a problem encountered in

I x-ray crystallography (Patterson 1935, Patterson 1944)

I mapping of restriction sites of DNA- partial digest problem-
(Stefik 1978, Dix and Kieronska 1988, Gwangsoo 1988,...)

I material science (Jiao-Stillinger-Torquato 2010)

I ...

“Turnpike Problem” or ”Partial Digest Problem”: points lie in R.
“Beltway Problem”: the points lie on a circle.
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4. Related Problem: Shape from Pairwise Distances

Question: Is the problem well-posed?
i.e., is the shape of a point-set uniquely determined by its
(unlabeled) pairwise distances?

Example
Is there a unique configuration of 4 points in the plane (up to a
rigid motion) whose pairwise distances are

{
p
2,
p
2, 2,

p
10,

p
10, 4}?
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4. Related Problem: Shape from Pairwise Distances

Question: Is the problem well-posed?
No.
Counterexample

Two point-sets with the same pairwise distances
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4. Related Problem: Shape from Pairwise Distances

Question: Is the problem well-posed?

For Turnpike Problem (D = 1):

I Picard (1939): Proof of uniqueness when no repeated
distances.

I Bloom (1977): 6-point counterexample.
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4. Related Problem: Shape from Pairwise Distances

Theorem (B.-Kemper)

Let k 2 N with 0 < k  3 or k � n + 2
There exists a non-zero polynomial in nk variables such that every
k-point configuration p1, . . . , pk 2 Rn with f (p1, . . . , pk) 6= 0 is
uniquely determined, up to a rigid motion, by the multiset of its
unlabeled pairwise distances.

Proof

I The (n + 1)⇥ (n + 1) minors of the matrix
� =

�
kxi � xkk2 � kxj � xkk2 � kxi � xjk2

�
are zero.

I The ideal I of syzygies between the distances Di ,j is generated
by those minors.

I Show that I is not preserved under distance label permutations
that do not correspond to point label permutation.
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4. Related Problem: Shape from Pairwise Distances

Theorem (B.-Kemper)

Let n 2 N with 0 < n  3 or n � m + 2
There exists a non-zero polynomial in mn variables such that every
n-point configuration p1, . . . , pn 2 Rm with f (p1, . . . , pn) 6= 0 is
uniquely determined, up to a rigid motion, by the multiset of its
unlabeled pairwise distances.

Corollary

I The set of exceptional point configurations has measure zero.

I Fast comparison algorithm that is accurate with probability 1.
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5. Extensions to Weighted Graphs

Theorem (B.-Kemper)

Let G be a graph with n > 5 nodes and generic real-valued edge
weights gi ,j 2 R. Then G is reconstructible, up to a graph
isomorphism, from the following two multi-sets:

{gi ,j |i , j are distinct}

{gi ,j + gj ,k |i , j , k are distinct }
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Thank you!
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