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Outline

e Grassmannians Gr,(C") are varieties that admit the two
possible types of cluster structures, namely A and X.

o Rietsch-Williams (RW) used X' cluster structure to construct
Newton-Okounkov bodies and toric degenerations.

o Gross-Hacking-Keel-Kontsevich (GHKK) construct
compactifications and toric degenerations from A cluster
structure.

Goal: Explain how to get Newton-Okunkov bodies from cluster
structures. In particular, explain how these approaches are related
and draw some consequences.
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The initial data

@ A quiver Q is a finite directed graph without loops e nor
2-cycles e 2 @

bjj = #{arrows i — j} — #{arrows j — i}

r is the number of vertices of @
o N=7"
e M = Homgz(N,Z)

e Ty = Spec(C[M])

e Tp = Spec(C[N])

@ (—,—): M x N — Z the evaluation pairing

e s=(ey,...,e) a Z-basis of N

@ ~ transcendence basis C(z%,...,z%) = C(Tuy)

sV = (f17"'7ﬁ) a Z-basis of M ~» (C(Zflj.._,Zfr) :C(TN)
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Cluster transformations

Let k be a vertex of Q and set v = ). bif;. We have two cluster
transformations ,uf and ,uf.

,uf:TN --> Ty
WAY'(2") = Zm(14z%)mee

:ui(: TM - TM
(E)(2") = 271+ z7)men

Key property: Mutations preserve the canonical volume form

_da =

4l Zy

We think of these cluster transformations as gluing data.
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Quiver mutation

We obtain a new quiver u(Q) by performing a local
transformation on @ around the vertex k

/\‘%/\

c+ ab

We also have the basis mutation pk(s) = (ef, ... e}), where

I

r_ {e,- + [e,-k]+ek I'# k

€ . i
— €k i=k

This formula also induces a mutation rule for the dual basis
1k(s™) = pk(s)*
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Construction of cluster varieties via the r-regular tree T"

N A N Ve
2 1 4 3 < . < .
XX
3 2 3 R , 2
' 4 1 e
\\T/,
« 3 N \ S
4 1 4 P AN 1
X X
1 2 3 4 ot ot
' e e e

& “ & “
Ag = U Tn.v/A-gluing Xg = U T/ X-gluing
veTr veTr

EGA 1 = The schemes A and X do exist.

We allow to have frozen directions in which we do not mutate.
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Example

A triangulation v of a pentagon defines:
@ a torus in the affine cone C(Gra(C®))

@ a quiver
1
P12 P1s
2 5 2
P23 Pas
3 4
P34

T, = {A: Pjj(A) # 0 for every arc ij in v}
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We obtain a cluster structure on the open positroid variety

X = Grp(C®) \ V(P12P23P34PssPi15)
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Cluster structures on open positroid variety

o Di = V(Pjyi-1)
o D= U?:l D,'
@ The open positroid variety is X := Grg(C")\ D

Theorem (Scott, Postnikov, Talaska, Miiller-Speyer, RW)

A reduced plabic graph G with trip permutation 7 , gives rise to
both an A and an X cluster structure on X.
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T& < X the initial torus for the X' structure = C(Tg) = C(X).

Fix a total order < on the cluster transcendence basis of (C(Té().
valg : (C(X)* — (Zr’ <Iex)

~» can define a Newton-Okounkov body Ay, (D)
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Fundamental geometric properties

@ By construction A = Ag and X = X are log-Calabi-Yau
varieties with maximal boundary

@ In particular, they are smooth and have a canonical nowhere
vanishing volume form

@ A cluster variety V has a well defined integral tropicalization

V'P(Z) := {divisorial valuations v : C(V)* — Z | v(Q) < 0} U {0}

Lemma
Every choice of cluster torus gives rise to identifications

XOP(Z) = M AP(Z) = N

Different identifications are related by piece-wise linear
isomorphisms.

11
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The g-fan

@ Let v be a vertex of T" ~ (Q,,sy)

@ The piece-wise linear isomorphism T, : M — M relating the
two identifications X*"°P(Z) = M is a composition of
tropicalized X cluster transformations.

o Let C be the positive orthant in M w.r.t. basis s;.

Theorem (GHKK)
Let Gf := T, X(CJ). Then

g=J o

veTr

is a simplicilal fan in Mg := M ® R.

12



R7

—fiq + fi5 + fis5 2 5 2 5 fia — fi3 + fa3

®
—fi3 + fa3 + f15

@ =cone(fi2, f23, 34, f1s, fi5)
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Connection to mirror symmetry

The Gross-Siebert program for log-CY's becomes simpler for
cluster varieties. We expect A and X to fit into a mirror
symmetry picture.

If V= A we let V¥ = X and vice-versa.

Fock-Goncharov conjecture: V'P(Z) parametrizes a C-basis
of the algebra of regular functions on VV.

Consequences of the conjecture: An irreducible divisor D at
infinity on a partial compactification of V gives rise to a
function fp : V¥V — C.

Suppose V C Y is a snc compactification with anticanonical
bounday D = Y \ V such that Q has a pole at every
irreducible component D; of D. FG conjecture holds =
Wp=>,fp, : VY — C. If Y is Fano, we expect Wp to be a
Landau-Ginzburg potential.
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Example
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Example
Let Y = Grp_x(C") and X = Y\ D, the positroid variety inside
Y. We have an associated mirror Landau-Ginzburg model

W:A—-C
A is the positrod variety inside Grg(C") and W =37 W;, where

W, = Plist1,itk—1Jufi+k+1}
Plit1,i+k]

Theorem (Marsh-Rietsch 13")
gH*(Y)lg™'] = Jac(W).

Theorem (RW 17')

The superpotential polytope associated to W and D is equal to
the NO body associated to A, (D).

15
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Scattering diagrams
Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

@ We might add walls to the g-fan
o We decorate every wall ? with power series

=1+ ZkZI Ckam

@ The wall-crossing automorphism associated to every loop is

trivial

R:1—2

1427

~

1+z°h

1+4zRh



Theta functions on A
Theorem (GHKK 14")

For each point m € X'°P(Z) consider the generating Laurent
series Uy, € C[[Tn]] counting broken lines whose direction at
infinity is m and whose endpoint is the positive orthant. If ¥, is a
finite sum then it is a global function on A.

142"
—f
N2

«§

—f z—f

~

1+zh

14 zh
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Theta functions X via AP
Definition

Let Q be a quiver. The A-variety with principal coefficients Agi"
is the A-variety associated to the principal extension QP".

1 2 3
o on ] T T
1—2—3 1—2—3

@ The lattice associated to AP is M x N
e Ty acts on AP"M ~ quotient map AP — X

TN(—> TN X TM TNC—> Aprin

|

Tm X
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Theta functions X via AP

Theorem (GHKK)

o For every point (m, n) € (XPn)troP(Z) the series U(m,n) has a
well defined Tp-weight
@ The tropical space A'°P identifies with the Ty-weight 0 slice

@ Theta functions on X" are the weight 0 ¥-functions on AP
Definition

Let A C A be a compactification given by setting frozen variables
to 0. The ¥J-potential is

Wy=> 0% :x>C,

¥} is the ¥-function associated to the /" component of A\ A.
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For each cluster variety Ag let © 4 C XSOP(Z) be the set of points
that correspond to polynomial theta functions.

mid(A) = (I, | m € O 4)

Theorem (GHKK)
© 4 contains the g-fan and {U, | m € © 4} is a basis for mid(.A).

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification Xémp = M. Then there
exists a linear dominance order <5 and a valuation

g. : mid(Ag) — (M, <)

such that g (¢,) = m and the theta basis is an adapted basis.
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For each cluster variety X' let ©y := © 4prin [ ATP(Z).
mid(X') = <19(‘:,7m) | (n,m) € Ox)

Theorem (Bossinger-Cheung-Magee-NC)

Let @ be arbitrary and fix an identification
(A Primytrop(7,) = N @& M. Then there exists a valuation

cs : mid(Ag) — (N, <iex)

such that Cs(ﬁff, m)) = n and the theta basis is an adapted basis.



Recall, X = Gr,_x(C")\ D.
@ There are 2 potentials W and Wy on XV

@ have valuations valg and cs on the section ring of
R(D) @j>1 T(X,0(D)) C C(X).
e Have valuation g, on R(DY) =C C(XV)

@ v any of such val. A,(D) := conv(LJj21 Jl.V(RJ-(D))>
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Recall, X = Gr,_x(C")\ D.
@ There are 2 potentials W and Wy on XV
@ have valuations valg and cs on the section ring of
R(D) ®j>1 T(X,0(D)) C C(X).
e Have valuation g, on R(DY) =c C(X")

@ v any of such val. A,(D) := conv(LJj21 Jl.V(RJ-(D))>

Theorem (BCMNC)
Q valg = ceop
Q there is a unique cluster ensemble isomorphism p : Xi — X}
such that p*(9) = W,
@ the dual cluster ensemble map pV gives identification
(P")*(Ag(D)) = Ag (DY)
@ the central fiber of the toric degeneration associated to valg

and the central fiber of the AP"" toric degeneration are
isomorphic.



23

Cluster ensemble maps

Every matrix of the form

BQ

mxm mxf

Q
Bfsm  *5F | (mifyx(mif)

where bj; = #{arrows i — j} — #{arrows j — i}, gives rise to a
map cluster ensemble map

Ag — Xo

Theorem (BCMNC)

There is a well defined notion of duality of cluster ensemble maps.
The Euler from of the dimer algerba associated G gives rise to p.



