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Outline

Grassmannians Grk(Cn) are varieties that admit the two
possible types of cluster structures, namely A and X .

Rietsch-Williams (RW) used X cluster structure to construct
Newton-Okounkov bodies and toric degenerations.

Gross-Hacking-Keel-Kontsevich (GHKK) construct
compactifications and toric degenerations from A cluster
structure.

Goal: Explain how to get Newton-Okunkov bodies from cluster
structures. In particular, explain how these approaches are related
and draw some consequences.
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The initial data

A quiver Q is a finite directed graph without loops
y• nor

2-cycles •� •

bij = #{arrows i → j} −#{arrows j → i}

r is the number of vertices of Q

N ∼= Zr

M = HomZ(N,Z)

TN = Spec(C[M])

TM = Spec(C[N])

〈−,−〉 : M × N → Z the evaluation pairing

s = (e1, . . . , er ) a Z-basis of N

; transcendence basis C(ze1 , . . . , zer ) = C(TM)

s∨ = (f1, . . . , fr ) a Z-basis of M ; C(z f1 , . . . , z fr ) = C(TN)
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Cluster transformations
Let k be a vertex of Q and set vk =

∑
i bik fi . We have two cluster

transformations µAk and µXk .

µAk : TN 99K TN

(µAk )∗(zm) = zm(1 + zvk )〈m,−ek 〉

µXk : TM 99K TM

(µXk )∗(zn) = zn(1 + z−ek )〈vk ,n〉

Key property: Mutations preserve the canonical volume form

ω =
dz1
z1
∧ · · · ∧ dzr

zr

We think of these cluster transformations as gluing data.
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Quiver mutation

We obtain a new quiver µk(Q) by performing a local
transformation on Q around the vertex k

k

i j

a b

c

µk
k

i j

a b

c + ab

We also have the basis mutation µk(s) = (e ′1, . . . e
′
r ), where

e ′i :=

{
ei + [εik ]+ek i 6= k

−ek i = k

This formula also induces a mutation rule for the dual basis
µk(s∗) = µk(s)∗
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Construction of cluster varieties via the r -regular tree Tr

•
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AQ :=
⋃
v∈Tr

TN;v/A-gluing XQ :=
⋃
v∈Tr

TM;v/X -gluing

EGA 1 ⇒ The schemes AQ and XQ do exist.

We allow to have frozen directions in which we do not mutate.
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Example

A triangulation v of a pentagon defines:

a torus in the affine cone C (Gr2(C5))

a quiver

1

2

3 4

5

P12

P23

P34

P45

P15

P13 P14

1

•
2

•

3 • 4

•
5

•
• •

Tv = {A : Pij(A) 6= 0 for every arc ij in v}
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1

2

3 4

5

P24 =
P23P14 + P15P12

P13

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

We obtain a cluster structure on the open positroid variety

X = Gr2(C5) \ V (P12P23P34P45P15)
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Cluster structures on open positroid variety

Di = V (P[i ,k+i−1])

D =
⋃n

i=1Di

The open positroid variety is X := Grk(Cn) \ D

Theorem (Scott, Postnikov, Talaska, Müller-Speyer, RW)

A reduced plabic graph G with trip permutation πk,n gives rise to
both an A and an X cluster structure on X .

1

2

34

5

∅

9



Cluster structures on open positroid variety

Di = V (P[i ,k+i−1])

D =
⋃n

i=1Di

The open positroid variety is X := Grk(Cn) \ D

Theorem (Scott, Postnikov, Talaska, Müller-Speyer, RW)

A reduced plabic graph G with trip permutation πk,n gives rise to
both an A and an X cluster structure on X .

1

2

34

5

∅

9



1

2

3

4

5

6
78

9

TXG ↪→ X the initial torus for the X structure ⇒ C(TXG ) ∼= C(X ).

Fix a total order < on the cluster transcendence basis of C(TXG ).

valG : C(X )∗ → (Zr , <lex)

; can define a Newton-Okounkov body ∆valG (D)
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Fundamental geometric properties

By construction A = AQ and X = XQ are log-Calabi-Yau
varieties with maximal boundary

In particular, they are smooth and have a canonical nowhere
vanishing volume form Ω

A cluster variety V has a well defined integral tropicalization

Vtrop(Z) := {divisorial valuations ν : C(V)∗ → Z | ν(Ω) < 0}∪ {0}

Lemma

Every choice of cluster torus gives rise to identifications

X trop(Z) ≡ M Atrop(Z) ≡ N

Different identifications are related by piece-wise linear
isomorphisms.
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The g-fan

Let v be a vertex of Tr ; (Qv , sv )

The piece-wise linear isomorphism Tv : M → M relating the
two identifications X trop(Z) ≡ M is a composition of
tropicalized X cluster transformations.

Let C+v be the positive orthant in M w.r.t. basis s∗v .

Theorem (GHKK)

Let G+v := T−1v (C+v ). Then

G =
⋃
v∈Tr

Gv

is a simplicilal fan in MR := M ⊗ R.
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•

•
f14

•
f14 − f13 + f23

•
f13

•
−f14 + f15 + f15

•
−f13 + f23 + f15•=cone(f12, f23, f34, f45, f15)

R7
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Connection to mirror symmetry

The Gross-Siebert program for log-CY’s becomes simpler for
cluster varieties. We expect A and X to fit into a mirror
symmetry picture.

If V = A we let V∨ = X and vice-versa.

Fock-Goncharov conjecture: Vtrop(Z) parametrizes a C-basis
of the algebra of regular functions on V∨.

Consequences of the conjecture: An irreducible divisor D at
infinity on a partial compactification of V gives rise to a
function fD : V∨ → C.

Suppose V ⊂ Y is a snc compactification with anticanonical
bounday D = Y \ V such that Ω has a pole at every
irreducible component Di of D. FG conjecture holds ⇒
WD =

∑
i fDi

: V∨ → C. If Y is Fano, we expect WD to be a
Landau-Ginzburg potential.
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Example
Let Y = Grn−k(Cn) and X = Y \ Dac the positroid variety inside
Y . We have an associated mirror Landau-Ginzburg model

W : A → C

A is the positrod variety inside Grk(Cn) and W =
∑n

i=1Wi , where

Wi :=
P[i+1,i+k−1]∪{i+k+1}

p[i+1,i+k]

Theorem (Marsh-Rietsch 13’)

qH∗(Y )[q−1] ∼= Jac(W ).

Theorem (RW 17’)

The superpotential polytope associated to W and D is equal to
the NO body associated to ∆valG (D).
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Scattering diagrams

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

We might add walls to the g-fan

We decorate every wall d with power series
fd = 1 +

∑
k≥1 ckz

km

The wall-crossing automorphism associated to every loop is
trivial

1 + z f2

1 + z−f1

1 + z f2−f1

Q : 1→ 2
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Theta functions on A
Theorem (GHKK 14’)

For each point m ∈ X trop(Z) consider the generating Laurent
series ϑm ∈ C[[TN ]] counting broken lines whose direction at
infinity is m and whose endpoint is the positive orthant. If ϑm is a
finite sum then it is a global function on A.

1 + z f2

1 + z−f1

1 + z f2−f1

z−f1

z f2−
f1

z−f1

z−f1
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Theta functions X via Aprin

Definition

Let Q be a quiver. The A-variety with principal coefficients Aprin
Q

is the A-variety associated to the principal extension Qprin.

Q :
1 2 3

Qprin :
1 2 3

1′ 2′ 3′

The lattice associated to Aprin is M × N

TN acts on Aprin ; quotient map Aprin → X

TN
� � // TN × TM

��

TN
� � // Aprin

��
TM X

18



Theta functions X via Aprin

Theorem (GHKK)

For every point (m, n) ∈ (X prin)trop(Z) the series ϑ(m,n) has a
well defined TN -weight

The tropical space Atrop identifies with the TN -weight 0 slice

Theta functions on X are the weight 0 ϑ-functions on Aprin

Definition

Let A ⊂ A be a compactification given by setting frozen variables
to 0. The ϑ-potential is

Wϑ =
∑
i

ϑXi : X → C,

ϑi is the ϑ-function associated to the i th component of A \ A.
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For each cluster variety AQ let ΘA ⊂ X trop
Q (Z) be the set of points

that correspond to polynomial theta functions.

mid(A) = 〈ϑm | m ∈ ΘA〉

Theorem (GHKK)

ΘA contains the g-fan and {ϑm | m ∈ ΘA} is a basis for mid(A).

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification X trop
Q

s≡ M. Then there
exists a linear dominance order ≺s and a valuation

gs : mid(AQ)→ (M,≺s)

such that gs(ϑm) = m and the theta basis is an adapted basis.
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For each cluster variety X let ΘX := ΘAprin

⋂
Atrop(Z).

mid(X ) = 〈ϑX(n,m) | (n,m) ∈ ΘX 〉

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification

(X prin)trop(Z)
s≡ N ⊕M. Then there exists a valuation

cs : mid(AQ)→ (N, <lex)

such that cs(ϑX(n,m)) = n and the theta basis is an adapted basis.
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Recall, X = Grn−k(Cn) \ D.

There are 2 potentials W and Wϑ on X∨

have valuations valG and cs on the section ring of
R(D)⊕j≥1 Γ(X ,O(jD)) ⊂ C(X ).

Have valuation gs on R(D∨) =⊂ C(X∨)

ν any of such val. ∆ν(D) := conv

(⋃
j≥1

1
j ν (Rj(D))

)

Theorem (BCMNC)

1 valG = csop

2 there is a unique cluster ensemble isomorphism p : X∨A → X∨X
such that p∗(ϑXi ) = Wi

3 the dual cluster ensemble map p∨ gives identification
(p∨)∗(∆G (D)) = ∆gs (D

∨)

4 the central fiber of the toric degeneration associated to valG
and the central fiber of the Aprin toric degeneration are
isomorphic.
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Cluster ensemble maps

Every matrix of the formBQ
m×m BQ

m×f

BQ
f×m ∗f×f


(m+f )×(m+f )

where bij = #{arrows i → j} −#{arrows j → i}, gives rise to a
map cluster ensemble map

AQ → XQ

Theorem (BCMNC)

There is a well defined notion of duality of cluster ensemble maps.
The Euler from of the dimer algerba associated G gives rise to p.
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