On Newton-Okounkov bodies associated to Grassmannians

Alfredo Nájera Chávez, UNAM at Oaxaca

joint with Lara Bossinger, Man-Wai Cheung and Timothy Magee

Outline

- Grassmannians $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ are varieties that admit the two possible types of cluster structures, namely \mathcal{A} and \mathcal{X}.
- Rietsch-Williams (RW) used \mathcal{X} cluster structure to construct Newton-Okounkov bodies and toric degenerations.
- Gross-Hacking-Keel-Kontsevich (GHKK) construct compactifications and toric degenerations from \mathcal{A} cluster structure.
Goal: Explain how to get Newton-Okunkov bodies from cluster structures. In particular, explain how these approaches are related and draw some consequences.

The initial data

- A quiver Q is a finite directed graph without loops - nor 2-cycles • $\rightleftarrows \bullet$
- $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$
- r is the number of vertices of Q

The initial data

- A quiver Q is a finite directed graph without loops - nor 2-cycles • $\rightleftarrows \bullet$
- $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^{r}$
- $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_{N}=\operatorname{Spec}(\mathbb{C}[M])$
- $T_{M}=\operatorname{Spec}(\mathbb{C}[N])$
- $\langle-,-\rangle: M \times N \rightarrow \mathbb{Z}$ the evaluation pairing

The initial data

- A quiver Q is a finite directed graph without loops \bullet nor 2-cycles • $\rightleftarrows \bullet$
- $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^{r}$
- $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_{N}=\operatorname{Spec}(\mathbb{C}[M])$
- $T_{M}=\operatorname{Spec}(\mathbb{C}[N])$
- $\langle-,-\rangle: M \times N \rightarrow \mathbb{Z}$ the evaluation pairing
- $s=\left(e_{1}, \ldots, e_{r}\right)$ a \mathbb{Z}-basis of N

The initial data

- A quiver Q is a finite directed graph without loops - nor 2-cycles • $\rightleftarrows \bullet$
- $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^{r}$
- $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_{N}=\operatorname{Spec}(\mathbb{C}[M])$
- $T_{M}=\operatorname{Spec}(\mathbb{C}[N])$
- $\langle-,-\rangle: M \times N \rightarrow \mathbb{Z}$ the evaluation pairing
- $s=\left(e_{1}, \ldots, e_{r}\right)$ a \mathbb{Z}-basis of N
- \leadsto transcendence basis $\mathbb{C}\left(z^{e_{1}}, \ldots, z^{e_{r}}\right)=\mathbb{C}\left(T_{M}\right)$

The initial data

- A quiver Q is a finite directed graph without loops - nor 2-cycles • $\rightleftarrows \bullet$
- $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^{r}$
- $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_{N}=\operatorname{Spec}(\mathbb{C}[M])$
- $T_{M}=\operatorname{Spec}(\mathbb{C}[N])$
- $\langle-,-\rangle: M \times N \rightarrow \mathbb{Z}$ the evaluation pairing
- $s=\left(e_{1}, \ldots, e_{r}\right)$ a \mathbb{Z}-basis of N
- \leadsto transcendence basis $\mathbb{C}\left(z^{e_{1}}, \ldots, z^{e_{r}}\right)=\mathbb{C}\left(T_{M}\right)$
- $s^{\vee}=\left(f_{1}, \ldots, f_{r}\right)$ a \mathbb{Z}-basis of $M \sim \mathbb{C}\left(z^{f_{1}}, \ldots, z^{f_{r}}\right)=\mathbb{C}\left(T_{N}\right)$

Cluster transformations

Let k be a vertex of Q and set $v_{k}=\sum_{i} b_{i k} f_{i}$. We have two cluster transformations $\mu_{k}^{\mathcal{A}}$ and $\mu_{k}^{\mathcal{X}}$.

Cluster transformations

Let k be a vertex of Q and set $v_{k}=\sum_{i} b_{i k} f_{i}$. We have two cluster transformations $\mu_{k}^{\mathcal{A}}$ and $\mu_{k}^{\mathcal{X}}$.

Cluster transformations

Let k be a vertex of Q and set $v_{k}=\sum_{i} b_{i k} f_{i}$. We have two cluster transformations $\mu_{k}^{\mathcal{A}}$ and $\mu_{k}^{\mathcal{X}}$.

$$
\begin{aligned}
\mu_{k}^{\mathcal{A}}: T_{N} & -\rightarrow T_{N} \\
\left(\mu_{k}^{\mathcal{A}}\right)^{*}\left(z^{m}\right) & =z^{m}\left(1+z^{v_{k}}\right)^{\left\langle m,-e_{k}\right\rangle} \\
& \\
\mu_{k}^{\mathcal{X}}: T_{M} & -\rightarrow T_{M} \\
\left(\mu_{k}^{\mathcal{X}}\right)^{*}\left(z^{n}\right) & =z^{n}\left(1+z^{-e_{k}}\right)^{\left\langle v_{k}, n\right\rangle}
\end{aligned}
$$

Cluster transformations

Let k be a vertex of Q and set $v_{k}=\sum_{i} b_{i k} f_{i}$. We have two cluster transformations $\mu_{k}^{\mathcal{A}}$ and $\mu_{k}^{\mathcal{X}}$.

$$
\begin{aligned}
\mu_{k}^{\mathcal{A}}: T_{N} & -\rightarrow T_{N} \\
\left(\mu_{k}^{\mathcal{A}}\right)^{*}\left(z^{m}\right) & =z^{m}\left(1+z^{v_{k}}\right)^{\left\langle m,-e_{k}\right\rangle} \\
& \\
\mu_{k}^{\mathcal{X}}: T_{M} & -\rightarrow T_{M} \\
\left(\mu_{k}^{\mathcal{X}}\right)^{*}\left(z^{n}\right) & =z^{n}\left(1+z^{-e_{k}}\right)^{\left\langle v_{k}, n\right\rangle}
\end{aligned}
$$

Key property: Mutations preserve the canonical volume form

$$
\omega=\frac{d z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d z_{r}}{z_{r}}
$$

We think of these cluster transformations as gluing data.

Quiver mutation

We obtain a new quiver $\mu_{k}(Q)$ by performing a local transformation on Q around the vertex k

Quiver mutation

We obtain a new quiver $\mu_{k}(Q)$ by performing a local transformation on Q around the vertex k

We also have the basis mutation $\mu_{k}(s)=\left(e_{1}^{\prime}, \ldots e_{r}^{\prime}\right)$, where

$$
e_{i}^{\prime}:= \begin{cases}e_{i}+\left[\epsilon_{i k}\right]_{+} e_{k} & i \neq k \\ -e_{k} & i=k\end{cases}
$$

This formula also induces a mutation rule for the dual basis

$$
\mu_{k}\left(s^{*}\right)=\mu_{k}(s)^{*}
$$

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

$\mathcal{A}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{N ; v} / \mathcal{A}$-gluing
$\mathcal{X}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{M ; v} / \mathcal{X}$-gluing

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

$\mathcal{A}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{N ; v} / \mathcal{A}$-gluing

$\mathcal{X}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{M ; v} / \mathcal{X}$-gluing

EGA $1 \Rightarrow$ The schemes \mathcal{A}_{Q} and \mathcal{X}_{Q} do exist.

Construction of cluster varieties via the r-regular tree \mathbb{T}^{r}

$\mathcal{A}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{N ; v} / \mathcal{A}$-gluing

$\mathcal{X}_{Q}:=\bigcup_{v \in \mathbb{T}^{r}} T_{M ; v} / \mathcal{X}$-gluing

EGA $1 \Rightarrow$ The schemes \mathcal{A}_{Q} and \mathcal{X}_{Q} do exist.
We allow to have frozen directions in which we do not mutate.

Example

A triangulation v of a pentagon defines:

- a torus in the affine cone $C\left(\operatorname{Gr}_{2}\left(\mathbb{C}^{5}\right)\right)$

$T_{v}=\left\{A: P_{i j}(A) \neq 0\right.$ for every arc ij in $\left.v\right\}$

Example

A triangulation v of a pentagon defines:

- a torus in the affine cone $C\left(\operatorname{Gr}_{2}\left(\mathbb{C}^{5}\right)\right)$
- a quiver

$T_{v}=\left\{A: P_{i j}(A) \neq 0\right.$ for every arc ij in $\left.v\right\}$

We obtain a cluster structure on the open positroid variety

$$
X=\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right) \backslash V\left(P_{12} P_{23} P_{34} P_{45} P_{15}\right)
$$

Cluster structures on open positroid variety

- $D_{i}=V\left(P_{[i, k+i-1]}\right)$
- $D=\bigcup_{i=1}^{n} D_{i}$
- The open positroid variety is $X:=\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right) \backslash D$

Cluster structures on open positroid variety

- $D_{i}=V\left(P_{[i, k+i-1]}\right)$
- $D=\bigcup_{i=1}^{n} D_{i}$
- The open positroid variety is $X:=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right) \backslash D$

Theorem (Scott, Postnikov, Talaska, Müller-Speyer, RW)
A reduced plabic graph G with trip permutation $\pi_{k, n}$ gives rise to both an \mathcal{A} and an \mathcal{X} cluster structure on X.

$T_{G}^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure

$T_{G}^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}\left(T_{G}^{\mathcal{X}}\right) \cong \mathbb{C}(X)$.

$T_{G}^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}\left(T_{G}^{\mathcal{X}}\right) \cong \mathbb{C}(X)$.
Fix a total order $<$ on the cluster transcendence basis of $\mathbb{C}\left(T_{G}^{\mathcal{X}}\right)$.

$T_{G}^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}\left(T_{G}^{\mathcal{X}}\right) \cong \mathbb{C}(X)$.
Fix a total order $<$ on the cluster transcendence basis of $\mathbb{C}\left(T_{G}^{\mathcal{X}}\right)$.

$$
\operatorname{val}_{G}: \mathbb{C}(X)^{*} \rightarrow\left(\mathbb{Z}^{r},<_{\operatorname{lex}}\right)
$$

$T_{G}^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}\left(T_{G}^{\mathcal{X}}\right) \cong \mathbb{C}(X)$.
Fix a total order $<$ on the cluster transcendence basis of $\mathbb{C}\left(T_{G}^{\mathcal{X}}\right)$.

$$
\operatorname{val}_{G}: \mathbb{C}(X)^{*} \rightarrow\left(\mathbb{Z}^{r},<_{\operatorname{lex}}\right)
$$

\leadsto can define a Newton-Okounkov body $\Delta_{\text {val }_{G}}(D)$

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_{Q}$ and $\mathcal{X}=\mathcal{X}_{Q}$ are log-Calabi-Yau varieties with maximal boundary

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_{Q}$ and $\mathcal{X}=\mathcal{X}_{Q}$ are log-Calabi-Yau varieties with maximal boundary
- In particular, they are smooth and have a canonical nowhere vanishing volume form Ω

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_{Q}$ and $\mathcal{X}=\mathcal{X}_{Q}$ are log-Calabi-Yau varieties with maximal boundary
- In particular, they are smooth and have a canonical nowhere vanishing volume form Ω
- A cluster variety \mathcal{V} has a well defined integral tropicalization
$\mathcal{V}^{\text {trop }}(\mathbb{Z}):=\left\{\right.$ divisorial valuations $\left.\nu: \mathbb{C}(\mathcal{V})^{*} \rightarrow \mathbb{Z} \mid \nu(\Omega)<0\right\} \cup\{0\}$

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_{Q}$ and $\mathcal{X}=\mathcal{X}_{Q}$ are log-Calabi-Yau varieties with maximal boundary
- In particular, they are smooth and have a canonical nowhere vanishing volume form Ω
- A cluster variety \mathcal{V} has a well defined integral tropicalization
$\mathcal{V}^{\text {trop }}(\mathbb{Z}):=\left\{\right.$ divisorial valuations $\left.\nu: \mathbb{C}(\mathcal{V})^{*} \rightarrow \mathbb{Z} \mid \nu(\Omega)<0\right\} \cup\{0\}$

Lemma

Every choice of cluster torus gives rise to identifications

$$
\mathcal{X}^{\text {trop }}(\mathbb{Z}) \equiv M \quad \mathcal{A}^{\text {trop }}(\mathbb{Z}) \equiv N
$$

Different identifications are related by piece-wise linear isomorphisms.

The g-fan

- Let v be a vertex of $\mathbb{T}^{r} \leadsto\left(Q_{v}, s_{v}\right)$

The g-fan

- Let v be a vertex of $\mathbb{T}^{r} \leadsto\left(Q_{v}, s_{v}\right)$
- The piece-wise linear isomorphism $T_{v}: M \rightarrow M$ relating the two identifications $\mathcal{X}^{\text {trop }}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.

The g-fan

- Let v be a vertex of $\mathbb{T}^{r} \leadsto\left(Q_{v}, s_{v}\right)$
- The piece-wise linear isomorphism $T_{v}: M \rightarrow M$ relating the two identifications $\mathcal{X}^{\text {trop }}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.
- Let \mathcal{C}_{v}^{+}be the positive orthant in M w.r.t. basis s_{v}^{*}.

The g-fan

- Let v be a vertex of $\mathbb{T}^{r} \leadsto\left(Q_{v}, s_{v}\right)$
- The piece-wise linear isomorphism $T_{v}: M \rightarrow M$ relating the two identifications $\mathcal{X}^{\text {trop }}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.
- Let \mathcal{C}_{v}^{+}be the positive orthant in M w.r.t. basis s_{v}^{*}.

Theorem (GHKK)
Let $\mathcal{G}_{v}^{+}:=T_{v}^{-1}\left(\mathcal{C}_{v}^{+}\right)$. Then

$$
\mathcal{G}=\bigcup_{v \in \mathbb{T}^{r}} \mathcal{G}_{v}
$$

is a simplicilal fan in $M_{\mathbb{R}}:=M \otimes \mathbb{R}$.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\text {trop }}(\mathbb{Z})$ parametrizes a \mathbb{C}-basis of the algebra of regular functions on \mathcal{V}^{\vee}.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\text {trop }}(\mathbb{Z})$ parametrizes a \mathbb{C}-basis of the algebra of regular functions on \mathcal{V}^{\vee}.
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of \mathcal{V} gives rise to a function $f_{D}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\text {trop }}(\mathbb{Z})$ parametrizes a \mathbb{C}-basis of the algebra of regular functions on \mathcal{V}^{\vee}.
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of \mathcal{V} gives rise to a function $f_{D}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D=Y \backslash \mathcal{V}$ such that Ω has a pole at every irreducible component D_{i} of D.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\text {trop }}(\mathbb{Z})$ parametrizes a \mathbb{C}-basis of the algebra of regular functions on \mathcal{V}^{\vee}.
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of \mathcal{V} gives rise to a function $f_{D}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D=Y \backslash \mathcal{V}$ such that Ω has a pole at every irreducible component D_{i} of D. FG conjecture holds \Rightarrow $W_{D}=\sum_{i} f_{D_{i}}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$.

Connection to mirror symmetry

- The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect \mathcal{A} and \mathcal{X} to fit into a mirror symmetry picture.
- If $\mathcal{V}=\mathcal{A}$ we let $\mathcal{V}^{\vee}=\mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\text {trop }}(\mathbb{Z})$ parametrizes a \mathbb{C}-basis of the algebra of regular functions on \mathcal{V}^{\vee}.
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of \mathcal{V} gives rise to a function $f_{D}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D=Y \backslash \mathcal{V}$ such that Ω has a pole at every irreducible component D_{i} of D. FG conjecture holds \Rightarrow $W_{D}=\sum_{i} f_{D_{i}}: \mathcal{V}^{\vee} \rightarrow \mathbb{C}$. If Y is Fano, we expect W_{D} to be a Landau-Ginzburg potential.

Example

Let $Y=\operatorname{Gr}_{n-k}\left(\mathbb{C}^{n}\right)$ and $\mathcal{X}=Y \backslash D_{\text {ac }}$ the positroid variety inside Y. We have an associated mirror Landau-Ginzburg model

$$
W: \mathcal{A} \rightarrow \mathbb{C}
$$

\mathcal{A} is the positrod variety inside $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ and $W=\sum_{i=1}^{n} W_{i}$, where

$$
W_{i}:=\frac{P_{[i+1, i+k-1] \cup\{i+k+1\}}}{p_{[i+1, i+k]}}
$$

Example

Let $Y=\operatorname{Gr}_{n-k}\left(\mathbb{C}^{n}\right)$ and $\mathcal{X}=Y \backslash D_{\mathrm{ac}}$ the positroid variety inside Y. We have an associated mirror Landau-Ginzburg model

$$
W: \mathcal{A} \rightarrow \mathbb{C}
$$

\mathcal{A} is the positrod variety inside $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$ and $W=\sum_{i=1}^{n} W_{i}$, where

$$
W_{i}:=\frac{P_{[i+1, i+k-1] \cup\{i+k+1\}}}{p_{[i+1, i+k]}}
$$

Theorem (Marsh-Rietsch 13')

$$
q H^{*}(Y)\left[q^{-1}\right] \cong \operatorname{Jac}(W)
$$

Theorem (RW 17')
The superpotential polytope associated to W and D is equal to the NO body associated to $\Delta_{\text {val }_{G}}(D)$.

Scattering diagrams

Theorem (GHKK)
The g-fan can be upgraded to a consistent scattering diagram.

Scattering diagrams

Theorem (GHKK)
The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the \mathbf{g}-fan

Scattering diagrams

Theorem (GHKK)
The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the \mathbf{g}-fan
- We decorate every wall \mathfrak{d} with power series

$$
f_{0}=1+\sum_{k \geq 1} c_{k} z^{k m}
$$

Scattering diagrams

Theorem (GHKK)
The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the \mathbf{g}-fan
- We decorate every wall \mathfrak{d} with power series $f_{0}=1+\sum_{k \geq 1} c_{k} z^{k m}$
- The wall-crossing automorphism associated to every loop is trivial

Scattering diagrams

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the \mathbf{g}-fan
- We decorate every wall \mathfrak{d} with power series

$$
f_{\mathrm{o}}=1+\sum_{k \geq 1} c_{k} z^{k m}
$$

- The wall-crossing automorphism associated to every loop is trivial

Theta functions on \mathcal{A}

Theorem (GHKK 14')
For each point $m \in \mathcal{X}^{\text {trop }}(\mathbb{Z})$ consider the generating Laurent series $\vartheta_{m} \in \mathbb{C}\left[\left[T_{N}\right]\right]$ counting broken lines whose direction at infinity is m and whose endpoint is the positive orthant. If ϑ_{m} is a finite sum then it is a global function on \mathcal{A}.

Theta functions \mathcal{X} via $\mathcal{A}^{\text {prin }}$

Definition

Let Q be a quiver. The \mathcal{A}-variety with principal coefficients $\mathcal{A}_{Q}^{\text {prin }}$ is the \mathcal{A}-variety associated to the principal extension $Q^{\text {prin }}$.

- The lattice associated to $\mathcal{A}^{\text {prin }}$ is $M \times N$
- T_{N} acts on $\mathcal{A}^{\text {prin }} \leadsto$ quotient $\operatorname{map} \mathcal{A}^{\text {prin }} \rightarrow \mathcal{X}$

Theta functions \mathcal{X} via $\mathcal{A}^{\text {prin }}$

Theorem (GHKK)

- For every point $(m, n) \in\left(\mathcal{X}^{\text {prin }}\right)^{\text {trop }}(\mathbb{Z})$ the series $\vartheta_{(m, n)}$ has a well defined T_{N}-weight
- The tropical space $\mathcal{A}^{\text {trop }}$ identifies with the T_{N}-weight 0 slice
- Theta functions on \mathcal{X} are the weight 0ϑ-functions on $\mathcal{A}^{\text {prin }}$

Definition

Let $\mathcal{A} \subset \overline{\mathcal{A}}$ be a compactification given by setting frozen variables to 0 . The ϑ-potential is

$$
W_{\vartheta}=\sum_{i} \vartheta_{i}^{\mathcal{X}}: \mathcal{X} \rightarrow \mathbb{C}
$$

ϑ_{i} is the ϑ-function associated to the $i^{\text {th }}$ component of $\overline{\mathcal{A}} \backslash \mathcal{A}$.

For each cluster variety \mathcal{A}_{Q} let $\Theta_{\mathcal{A}} \subset \mathcal{X}_{Q}^{\text {trop }}(\mathbb{Z})$ be the set of points that correspond to polynomial theta functions.

$$
\operatorname{mid}(\mathcal{A})=\left\langle\vartheta_{m} \mid m \in \Theta_{\mathcal{A}}\right\rangle
$$

Theorem (GHKK)
$\Theta_{\mathcal{A}}$ contains the \mathbf{g}-fan and $\left\{\vartheta_{m} \mid m \in \Theta_{\mathcal{A}}\right\}$ is a basis for $\operatorname{mid}(\mathcal{A})$.

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification $\mathcal{X}_{Q}^{\text {trop }} \stackrel{s}{=} M$. Then there exists a linear dominance order \prec_{s} and a valuation

$$
\mathbf{g}_{s}: \operatorname{mid}\left(\mathcal{A}_{Q}\right) \rightarrow\left(M, \prec_{s}\right)
$$

such that $\mathbf{g}_{s}\left(\vartheta_{m}\right)=m$ and the theta basis is an adapted basis.

For each cluster variety \mathcal{X} let $\Theta_{\mathcal{X}}:=\Theta_{\mathcal{A} \text { prin }} \bigcap \mathcal{A}^{\text {trop }}(\mathbb{Z})$.

$$
\operatorname{mid}(\mathcal{X})=\left\langle\vartheta_{(n, m)}^{\mathcal{X}} \mid(n, m) \in \Theta_{\mathcal{X}}\right\rangle
$$

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification $\left(\mathcal{X}^{\text {prin }}\right)^{\text {trop }}(\mathbb{Z}) \stackrel{s}{=} N \oplus M$. Then there exists a valuation

$$
\mathbf{c}_{s}: \operatorname{mid}\left(\mathcal{A}_{Q}\right) \rightarrow\left(N,<_{\operatorname{lex}}\right)
$$

such that $\mathbf{c}_{s}\left(\vartheta_{(n, m)}^{\mathcal{X}}\right)=n$ and the theta basis is an adapted basis.

Recall, $X=\operatorname{Gr}_{n-k}\left(\mathbb{C}^{n}\right) \backslash D$.

- There are 2 potentials W and W_{ϑ} on X^{\vee}
- have valuations val ${ }_{G}$ and \mathbf{c}_{s} on the section ring of $R(D) \oplus_{j \geq 1} \Gamma(X, \mathcal{O}(j D)) \subset \mathbb{C}(X)$.
- Have valuation \mathbf{g}_{s} on $R\left(D^{\vee}\right)=\subset \mathbb{C}\left(X^{\vee}\right)$
- ν any of such val. $\Delta_{\nu}(D):=\operatorname{conv}\left(\bigcup_{j \geq 1} \frac{1}{j} \nu\left(R_{j}(D)\right)\right)$

Recall, $X=\operatorname{Gr}_{n-k}\left(\mathbb{C}^{n}\right) \backslash D$.

- There are 2 potentials W and W_{ϑ} on X^{\vee}
- have valuations val ${ }_{G}$ and \mathbf{c}_{s} on the section ring of $R(D) \oplus_{j \geq 1} \Gamma(X, \mathcal{O}(j D)) \subset \mathbb{C}(X)$.
- Have valuation \mathbf{g}_{s} on $R\left(D^{\vee}\right)=\subset \mathbb{C}\left(X^{\vee}\right)$
- ν any of such val. $\Delta_{\nu}(D):=\operatorname{conv}\left(\bigcup_{j \geq 1} \frac{1}{j} \nu\left(R_{j}(D)\right)\right)$

Theorem (BCMNC)

(1) $\mathrm{val}_{G}=\mathbf{c}_{s^{\text {op }}}$
(2) there is a unique cluster ensemble isomorphism $p: X_{\mathcal{A}}^{\vee} \rightarrow X_{\mathcal{X}}^{\vee}$ such that $p^{*}\left(\vartheta_{i}^{\mathcal{X}}\right)=W_{i}$
(3) the dual cluster ensemble map p^{\vee} gives identification $\left(p^{\vee}\right)^{*}\left(\Delta_{G}(D)\right)=\Delta_{\mathbf{g}_{s}}\left(D^{\vee}\right)$
(1) the central fiber of the toric degeneration associated to val ${ }_{G}$ and the central fiber of the $\mathcal{A}^{\text {prin }}$ toric degeneration are isomorphic.

Cluster ensemble maps

Every matrix of the form

$$
\left[\begin{array}{ll}
B_{m \times m}^{Q} & B_{m \times f}^{Q} \\
B_{f \times m}^{Q} & *_{f \times f}
\end{array}\right]_{(m+f) \times(m+f)}
$$

where $b_{i j}=\#\{$ arrows $i \rightarrow j\}-\#\{$ arrows $j \rightarrow i\}$, gives rise to a map cluster ensemble map

$$
\mathcal{A}_{Q} \rightarrow \mathcal{X}_{Q}
$$

Theorem (BCMNC)

There is a well defined notion of duality of cluster ensemble maps. The Euler from of the dimer algerba associated G gives rise to p.

