On Newton–Okounkov bodies associated to Grassmannians

Alfredo Nájera Chávez, UNAM at Oaxaca

joint with Lara Bossinger, Man-Wai Cheung and Timothy Magee

Outline

- Grassmannians $\operatorname{Gr}_k(\mathbb{C}^n)$ are varieties that admit the two possible types of cluster structures, namely $\mathcal A$ and $\mathcal X$.
- Rietsch-Williams (RW) used \mathcal{X} cluster structure to construct Newton-Okounkov bodies and toric degenerations.
- ullet Gross-Hacking-Keel-Kontsevich (GHKK) construct compactifications and toric degenerations from ${\cal A}$ cluster structure.

Goal: Explain how to get Newton-Okunkov bodies from cluster structures. In particular, explain how these approaches are related and draw some consequences.

- A quiver Q is a finite directed graph without loops $\stackrel{\frown}{\bullet}$ nor 2-cycles $\bullet \rightleftarrows \bullet$
- $b_{ij} = \#\{\text{arrows } i \to j\} \#\{\text{arrows } j \to i\}$
- ullet r is the number of vertices of Q

- $b_{ij} = \#\{\text{arrows } i \to j\} \#\{\text{arrows } j \to i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^r$
- $M = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_N = \operatorname{Spec}(\mathbb{C}[M])$
- $T_M = \operatorname{Spec}(\mathbb{C}[N])$
- $\langle -, \rangle : M \times N \to \mathbb{Z}$ the evaluation pairing

- $b_{ij} = \#\{\text{arrows } i \to j\} \#\{\text{arrows } j \to i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^r$
- $M = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_N = \operatorname{Spec}(\mathbb{C}[M])$
- $T_M = \operatorname{Spec}(\mathbb{C}[N])$
- $\langle -, \rangle : M \times N \to \mathbb{Z}$ the evaluation pairing
- $s=(e_1,\ldots,e_r)$ a \mathbb{Z} -basis of N

- $b_{ij} = \#\{\text{arrows } i \to j\} \#\{\text{arrows } j \to i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^r$
- $M = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_N = \operatorname{Spec}(\mathbb{C}[M])$
- $T_M = \operatorname{Spec}(\mathbb{C}[N])$
- ullet $\langle -,
 angle : M imes N o \mathbb{Z}$ the evaluation pairing
- $s=(e_1,\ldots,e_r)$ a \mathbb{Z} -basis of N
- \rightsquigarrow transcendence basis $\mathbb{C}(z^{e_1},\ldots,z^{e_r})=\mathbb{C}(T_M)$

- $b_{ij} = \#\{\text{arrows } i \to j\} \#\{\text{arrows } j \to i\}$
- r is the number of vertices of Q
- $N \cong \mathbb{Z}^r$
- $M = \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(N, \mathbb{Z})$
- $T_N = \operatorname{Spec}(\mathbb{C}[M])$
- $T_M = \operatorname{Spec}(\mathbb{C}[N])$
- $\langle -, \rangle : M \times N \to \mathbb{Z}$ the evaluation pairing
- $s = (e_1, \ldots, e_r)$ a \mathbb{Z} -basis of N
- \rightsquigarrow transcendence basis $\mathbb{C}(z^{e_1},\ldots,z^{e_r})=\mathbb{C}(T_M)$
- ullet $s^ee = (f_1, \ldots, f_r)$ a \mathbb{Z} -basis of $M \leadsto \mathbb{C}(z^{f_1}, \ldots, z^{f_r}) = \mathbb{C}(T_N)$

Let k be a vertex of Q and set $v_k = \sum_i b_{ik} f_i$. We have two cluster transformations $\mu_k^{\mathcal{A}}$ and $\mu_k^{\mathcal{X}}$.

Let k be a vertex of Q and set $v_k = \sum_i b_{ik} f_i$. We have two cluster transformations $\mu_k^{\mathcal{A}}$ and $\mu_k^{\mathcal{X}}$.

Let k be a vertex of Q and set $v_k = \sum_i b_{ik} f_i$. We have two cluster transformations $\mu_k^{\mathcal{A}}$ and $\mu_k^{\mathcal{X}}$.

$$\mu_k^{\mathcal{A}}: T_N \longrightarrow T_N$$

$$(\mu_k^{\mathcal{A}})^*(z^m) = z^m (1+z^{\nu_k})^{\langle m, -e_k \rangle}$$

$$\mu_k^{\mathcal{X}}: T_M \longrightarrow T_M$$

 $(\mu_k^{\mathcal{X}})^*(z^n) = z^n(1+z^{-e_k})^{\langle v_k, n \rangle}$

Let k be a vertex of Q and set $v_k = \sum_i b_{ik} f_i$. We have two cluster transformations $\mu_k^{\mathcal{A}}$ and $\mu_k^{\mathcal{X}}$.

$$\mu_k^{\mathcal{A}}: T_N \longrightarrow T_N (\mu_k^{\mathcal{A}})^*(z^m) = z^m (1+z^{\nu_k})^{\langle m, -e_k \rangle}$$

$$\mu_k^{\mathcal{X}} : T_M \longrightarrow T_M$$

$$(\mu_k^{\mathcal{X}})^*(z^n) = z^n (1 + z^{-e_k})^{\langle v_k, n \rangle}$$

Key property: Mutations preserve the canonical volume form

$$\omega = \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_r}{z_r}$$

We think of these cluster transformations as gluing data.

Quiver mutation

We obtain a new quiver $\mu_k(Q)$ by performing a local transformation on Q around the vertex k

Quiver mutation

We obtain a new quiver $\mu_k(Q)$ by performing a local transformation on Q around the vertex k

We also have the basis mutation $\mu_k(s) = (e'_1, \dots e'_r)$, where

$$e'_i := \begin{cases} e_i + [\epsilon_{ik}]_+ e_k & i \neq k \\ -e_k & i = k \end{cases}$$

This formula also induces a mutation rule for the dual basis $\mu_k(s^*) = \mu_k(s)^*$

$$\mathcal{A}_Q := \bigcup_{\mathbf{v} \in \mathbb{T}^r} T_{N;\mathbf{v}}/\mathcal{A}$$
-gluing

$$\mathcal{X}_Q := \bigcup_{\mathbf{v} \in \mathbb{T}^r} \mathcal{T}_{M;\mathbf{v}}/\mathcal{X}$$
-gluing

EGA $1 \Rightarrow$ The schemes \mathcal{A}_Q and \mathcal{X}_Q do exist.

EGA $1 \Rightarrow$ The schemes \mathcal{A}_Q and \mathcal{X}_Q do exist.

We allow to have frozen directions in which we do not mutate.

Example

A triangulation v of a pentagon defines:

• a torus in the affine cone $C(Gr_2(\mathbb{C}^5))$

 $T_{v} = \{A : P_{ij}(A) \neq 0 \text{ for every arc } ij \text{ in } v\}$

Example

A triangulation v of a pentagon defines:

- a torus in the affine cone $C(Gr_2(\mathbb{C}^5))$
- a quiver

 $T_{v} = \{A : P_{ij}(A) \neq 0 \text{ for every arc } ij \text{ in } v\}$

We obtain a cluster structure on the open positroid variety

$$X = Gr_2(\mathbb{C}^5) \setminus V(P_{12}P_{23}P_{34}P_{45}P_{15})$$

Cluster structures on open positroid variety

- $D_i = V(P_{[i,k+i-1]})$
- $D = \bigcup_{i=1}^n D_i$
- The open positroid variety is $X := Gr_k(\mathbb{C}^n) \setminus D$

Cluster structures on open positroid variety

- $D = \bigcup_{i=1}^n D_i$
- The open positroid variety is $X := Gr_k(\mathbb{C}^n) \setminus D$

Theorem (Scott, Postnikov, Talaska, Müller-Speyer, RW)

A reduced plabic graph G with trip permutation $\pi_{k,n}$ gives rise to both an \mathcal{A} and an \mathcal{X} cluster structure on X.

a

 $T_G^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure

 $\mathcal{T}_G^{\mathcal{X}} \hookrightarrow X \text{ the initial torus for the } \mathcal{X} \text{ structure} \Rightarrow \mathbb{C}(\mathcal{T}_G^{\mathcal{X}}) \cong \mathbb{C}(X).$

 $T_G^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}(T_G^{\mathcal{X}}) \cong \mathbb{C}(X)$. Fix a total order < on the cluster transcendence basis of $\mathbb{C}(T_G^{\mathcal{X}})$.

 $T_G^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}(T_G^{\mathcal{X}}) \cong \mathbb{C}(X)$. Fix a total order < on the cluster transcendence basis of $\mathbb{C}(T_G^{\mathcal{X}})$.

$$\mathsf{val}_G: \mathbb{C}(X)^* o (\mathbb{Z}^r, <_{\mathsf{lex}})$$

 $T_G^{\mathcal{X}} \hookrightarrow X$ the initial torus for the \mathcal{X} structure $\Rightarrow \mathbb{C}(T_G^{\mathcal{X}}) \cong \mathbb{C}(X)$. Fix a total order < on the cluster transcendence basis of $\mathbb{C}(T_G^{\mathcal{X}})$.

$$\mathsf{val}_G: \mathbb{C}(X)^* o (\mathbb{Z}^r, <_{\mathsf{lex}})$$

 \rightarrow can define a Newton-Okounkov body $\Delta_{val_G}(D)$

Fundamental geometric properties

• By construction $\mathcal{A}=\mathcal{A}_Q$ and $\mathcal{X}=\mathcal{X}_Q$ are log-Calabi-Yau varieties with maximal boundary

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_Q$ and $\mathcal{X}=\mathcal{X}_Q$ are log-Calabi-Yau varieties with maximal boundary
- \bullet In particular, they are smooth and have a canonical nowhere vanishing volume form Ω

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_Q$ and $\mathcal{X}=\mathcal{X}_Q$ are log-Calabi-Yau varieties with maximal boundary
- \bullet In particular, they are smooth and have a canonical nowhere vanishing volume form Ω
- ullet A cluster variety ${\cal V}$ has a well defined integral tropicalization

 $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z}) := \{\mathsf{divisorial} \; \mathsf{valuations} \;
u : \mathbb{C}(\mathcal{V})^* o \mathbb{Z} \; | \;
u(\Omega) < 0\} \cup \{0\}$

Fundamental geometric properties

- By construction $\mathcal{A}=\mathcal{A}_Q$ and $\mathcal{X}=\mathcal{X}_Q$ are log-Calabi-Yau varieties with maximal boundary
- \bullet In particular, they are smooth and have a canonical nowhere vanishing volume form Ω
- ullet A cluster variety ${\cal V}$ has a well defined integral tropicalization

$$\mathcal{V}^{\mathsf{trop}}(\mathbb{Z}) := \{\mathsf{divisorial} \ \mathsf{valuations} \ \nu : \mathbb{C}(\mathcal{V})^* \to \mathbb{Z} \mid \nu(\Omega) < 0\} \cup \{0\}$$

Lemma

Every choice of cluster torus gives rise to identifications

$$\mathcal{X}^{\mathsf{trop}}(\mathbb{Z}) \equiv M$$
 $\mathcal{A}^{\mathsf{trop}}(\mathbb{Z}) \equiv N$

Different identifications are related by piece-wise linear isomorphisms.

ullet Let v be a vertex of $\mathbb{T}^r \leadsto (Q_v, s_v)$

- Let v be a vertex of $\mathbb{T}^r \leadsto (Q_v, s_v)$
- The piece-wise linear isomorphism $T_{\nu}: M \to M$ relating the two identifications $\mathcal{X}^{\mathsf{trop}}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.

- Let v be a vertex of $\mathbb{T}^r \rightsquigarrow (Q_v, s_v)$
- The piece-wise linear isomorphism $T_{\nu}: M \to M$ relating the two identifications $\mathcal{X}^{\mathsf{trop}}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.
- Let C_v^+ be the positive orthant in M w.r.t. basis s_v^* .

- ullet Let v be a vertex of $\mathbb{T}^r \leadsto (Q_v, s_v)$
- The piece-wise linear isomorphism $T_{\nu}: M \to M$ relating the two identifications $\mathcal{X}^{\operatorname{trop}}(\mathbb{Z}) \equiv M$ is a composition of tropicalized \mathcal{X} cluster transformations.
- Let C_v^+ be the positive orthant in M w.r.t. basis s_v^* .

Theorem (GHKK)

Let $\mathcal{G}_{\mathbf{v}}^+:=\mathcal{T}_{\mathbf{v}}^{-1}(\mathcal{C}_{\mathbf{v}}^+).$ Then

$$\mathcal{G} = \bigcup_{\mathbf{v} \in \mathbb{T}^r} \mathcal{G}_{\mathbf{v}}$$

is a simpliciall fan in $M_{\mathbb{R}} := M \otimes \mathbb{R}$.

ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.

- ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.

- \bullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z})$ parametrizes a \mathbb{C} -basis of the algebra of regular functions on \mathcal{V}^{\vee} .

- ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z})$ parametrizes a \mathbb{C} -basis of the algebra of regular functions on \mathcal{V}^{\vee} .
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of $\mathcal V$ gives rise to a function $f_D: \mathcal V^\vee \to \mathbb C$.

- ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z})$ parametrizes a \mathbb{C} -basis of the algebra of regular functions on \mathcal{V}^{\vee} .
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of $\mathcal V$ gives rise to a function $f_D: \mathcal V^\vee \to \mathbb C$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D = Y \setminus \mathcal{V}$ such that Ω has a pole at every irreducible component D_i of D.

- ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z})$ parametrizes a \mathbb{C} -basis of the algebra of regular functions on \mathcal{V}^{\vee} .
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of $\mathcal V$ gives rise to a function $f_D: \mathcal V^\vee \to \mathbb C$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D = Y \setminus \mathcal{V}$ such that Ω has a pole at every irreducible component D_i of D. FG conjecture holds \Rightarrow $W_D = \sum_i f_{D_i} : \mathcal{V}^{\vee} \to \mathbb{C}$.

- ullet The Gross-Siebert program for log-CY's becomes simpler for cluster varieties. We expect ${\mathcal A}$ and ${\mathcal X}$ to fit into a mirror symmetry picture.
- If $\mathcal{V} = \mathcal{A}$ we let $\mathcal{V}^{\vee} = \mathcal{X}$ and vice-versa.
- Fock-Goncharov conjecture: $\mathcal{V}^{\mathsf{trop}}(\mathbb{Z})$ parametrizes a \mathbb{C} -basis of the algebra of regular functions on \mathcal{V}^{\vee} .
- Consequences of the conjecture: An irreducible divisor D at infinity on a partial compactification of $\mathcal V$ gives rise to a function $f_D: \mathcal V^\vee \to \mathbb C$.
- Suppose $\mathcal{V} \subset Y$ is a snc compactification with anticanonical bounday $D = Y \setminus \mathcal{V}$ such that Ω has a pole at every irreducible component D_i of D. FG conjecture holds \Rightarrow $W_D = \sum_i f_{D_i} : \mathcal{V}^{\vee} \to \mathbb{C}$. If Y is Fano, we expect W_D to be a Landau-Ginzburg potential.

Example

Let $Y = \operatorname{Gr}_{n-k}(\mathbb{C}^n)$ and $\mathcal{X} = Y \setminus D_{\operatorname{ac}}$ the positroid variety inside Y. We have an associated mirror Landau-Ginzburg model

$$W: \mathcal{A} \to \mathbb{C}$$

 ${\mathcal A}$ is the positrod variety inside ${\rm Gr}_k({\mathbb C}^n)$ and $W=\sum_{i=1}^n W_i$, where

$$W_i := \frac{P_{[i+1,i+k-1] \cup \{i+k+1\}}}{P_{[i+1,i+k]}}$$

Example

Let $Y = Gr_{n-k}(\mathbb{C}^n)$ and $\mathcal{X} = Y \setminus D_{ac}$ the positroid variety inside Y. We have an associated mirror Landau-Ginzburg model

$$W: \mathcal{A} \to \mathbb{C}$$

 $\mathcal A$ is the positrod variety inside $\mathrm{Gr}_k(\mathbb C^n)$ and $W=\sum_{i=1}^n W_i$, where

$$W_i := \frac{P_{[i+1,i+k-1] \cup \{i+k+1\}}}{P_{[i+1,i+k]}}$$

Theorem (Marsh-Rietsch 13')

$$qH^*(Y)[q^{-1}] \cong Jac(W).$$

Theorem (RW 17')

The superpotential polytope associated to W and D is equal to the NO body associated to $\Delta_{\text{val}_G}(D)$.

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

 \bullet We might add walls to the g-fan

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the **g**-fan
- We decorate every wall $\mathfrak d$ with power series $f_{\mathfrak d} = 1 + \sum_{k>1} c_k z^{km}$

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the **g**-fan
- We decorate every wall $\mathfrak d$ with power series $f_{\mathfrak d} = 1 + \sum_{k>1} c_k z^{km}$
- The wall-crossing automorphism associated to every loop is trivial

Theorem (GHKK)

The g-fan can be upgraded to a consistent scattering diagram.

- We might add walls to the **g**-fan
- We decorate every wall $\mathfrak d$ with power series $f_{\mathfrak d} = 1 + \sum_{k>1} c_k z^{km}$
- The wall-crossing automorphism associated to every loop is trivial

Theta functions on A

Theorem (GHKK 14')

For each point $m \in \mathcal{X}^{\operatorname{trop}}(\mathbb{Z})$ consider the generating Laurent series $\vartheta_m \in \mathbb{C}[[T_N]]$ counting broken lines whose direction at infinity is m and whose endpoint is the positive orthant. If ϑ_m is a finite sum then it is a global function on \mathcal{A} .

Theta functions \mathcal{X} via $\mathcal{A}^{\mathsf{prin}}$

Definition

Let Q be a quiver. The A-variety with principal coefficients A_Q^{prin} is the A-variety associated to the principal extension Q^{prin} .

- ullet The lattice associated to $\mathcal{A}^{\mathsf{prin}}$ is $M \times N$
- ullet T_N acts on $\mathcal{A}^{\mathsf{prin}} \leadsto \mathsf{quotient} \ \mathsf{map} \ \mathcal{A}^{\mathsf{prin}} o \mathcal{X}$

Theta functions \mathcal{X} via $\mathcal{A}^{\mathsf{prin}}$

Theorem (GHKK)

- For every point $(m, n) \in (\mathcal{X}^{\mathsf{prin}})^{\mathsf{trop}}(\mathbb{Z})$ the series $\vartheta_{(m,n)}$ has a well defined T_N -weight
- ullet The tropical space $\mathcal{A}^{\mathsf{trop}}$ identifies with the T_N -weight 0 slice
- ullet Theta functions on ${\mathcal X}$ are the weight 0 ${\partial}$ -functions on ${\mathcal A}^{\mathsf{prin}}$

Definition

Let $\mathcal{A}\subset\overline{\mathcal{A}}$ be a compactification given by setting frozen variables to 0. The ϑ -potential is

$$W_{\vartheta} = \sum_{i} \vartheta_{i}^{\mathcal{X}} : \mathcal{X} \to \mathbb{C},$$

 ϑ_i is the ϑ -function associated to the i^{th} component of $\overline{\mathcal{A}} \setminus \mathcal{A}$.

For each cluster variety \mathcal{A}_Q let $\Theta_{\mathcal{A}} \subset \mathcal{X}_Q^{\mathsf{trop}}(\mathbb{Z})$ be the set of points that correspond to polynomial theta functions.

$$\mathsf{mid}(\mathcal{A}) = \langle \vartheta_m \mid m \in \Theta_{\mathcal{A}} \rangle$$

Theorem (GHKK)

 $\Theta_{\mathcal{A}}$ contains the **g**-fan and $\{\vartheta_m \mid m \in \Theta_{\mathcal{A}}\}$ is a basis for mid (\mathcal{A}) .

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification $\mathcal{X}_Q^{\mathsf{trop}} \stackrel{s}{\equiv} M$. Then there exists a linear dominance order \prec_s and a valuation

$$\mathbf{g}_s : \mathsf{mid}(\mathcal{A}_Q) \to (M, \prec_s)$$

such that $\mathbf{g}_{\mathbf{s}}(\vartheta_m) = m$ and the theta basis is an adapted basis.

For each cluster variety \mathcal{X} let $\Theta_{\mathcal{X}} := \Theta_{\mathcal{A}^{\mathsf{prin}}} \bigcap \mathcal{A}^{\mathsf{trop}}(\mathbb{Z})$.

$$\mathsf{mid}(\mathcal{X}) = \langle \vartheta^{\mathcal{X}}_{(n,m)} \mid (n,m) \in \Theta_{\mathcal{X}} \rangle$$

Theorem (Bossinger-Cheung-Magee-NC)

Let Q be arbitrary and fix an identification $(\mathcal{X}^{\mathsf{prin}})^{\mathsf{trop}}(\mathbb{Z}) \stackrel{\mathfrak{s}}{=} N \oplus M$. Then there exists a valuation

$$\mathbf{c}_s:\mathsf{mid}(\mathcal{A}_Q) o (\mathit{N},<_{\mathsf{lex}})$$

such that $\mathbf{c}_s(\vartheta_{(n,m)}^{\mathcal{X}}) = n$ and the theta basis is an adapted basis.

Recall, $X = \operatorname{Gr}_{n-k}(\mathbb{C}^n) \setminus D$.

- There are 2 potentials W and W_{ϑ} on X^{\vee}
- have valuations val_G and \mathbf{c}_s on the section ring of $R(D) \oplus_{j \geq 1} \Gamma(X, \mathcal{O}(jD)) \subset \mathbb{C}(X)$.
- Have valuation \mathbf{g}_s on $R(D^{\vee}) = \subset \mathbb{C}(X^{\vee})$
- ullet u any of such val. $\Delta_{
 u}(D) := \operatorname{conv} \left(\bigcup_{j \geq 1} rac{1}{j}
 u \left(R_j(D) \right)
 ight)$

Recall, $X = \operatorname{Gr}_{n-k}(\mathbb{C}^n) \setminus D$.

- There are 2 potentials W and W_{ϑ} on X^{\vee}
- have valuations val_G and \mathbf{c}_s on the section ring of $R(D) \oplus_{j \geq 1} \Gamma(X, \mathcal{O}(jD)) \subset \mathbb{C}(X)$.
- Have valuation \mathbf{g}_s on $R(D^{\vee}) = \subset \mathbb{C}(X^{\vee})$
- ullet u any of such val. $\Delta_
 u(D) := \operatorname{conv} \left(\bigcup_{j \geq 1} rac{1}{j}
 u\left(R_j(D)
 ight)
 ight)$

Theorem (BCMNC)

- $\mathbf{0}$ val $_G = \mathbf{c}_{s^{\mathrm{op}}}$
- ② there is a unique cluster ensemble isomorphism $p: X_{\mathcal{A}}^{\vee} \to X_{\mathcal{X}}^{\vee}$ such that $p^*(\vartheta_i^{\mathcal{X}}) = W_i$
- the dual cluster ensemble map p^{\vee} gives identification $(p^{\vee})^*(\Delta_G(D)) = \Delta_{\mathbf{g}_{\mathbf{s}}}(D^{\vee})$
- the central fiber of the toric degeneration associated to val_G and the central fiber of the \mathcal{A}^{prin} toric degeneration are isomorphic.

Cluster ensemble maps

Every matrix of the form

$$\begin{bmatrix} B_{m \times m}^{Q} & B_{m \times f}^{Q} \\ B_{f \times m}^{Q} & *_{f \times f} \end{bmatrix}_{(m+f) \times (m+f)}$$

where $b_{ij} = \#\{\text{arrows } i \to j\} - \#\{\text{arrows } j \to i\}$, gives rise to a map cluster ensemble map

$${\cal A}_{m{Q}}
ightarrow {\cal X}_{m{Q}}$$

Theorem (BCMNC)

There is a well defined notion of duality of cluster ensemble maps. The Euler from of the dimer algerba associated G gives rise to p.