Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics
The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany)
(arXiv:2004.10891)

ICERM Workshop: Algebraic Geometry and Polyhedra April 12-17, 2021

Tropical Mathematics

Tropicalization

ALG. GEOMETRY

- Solutions to poly eqns. over valued fields
- Curves
- Geometric invariants

COMBINATORICS

- Polyhedral complexes
- Metric graphs
- Geom. of initial degen.
- Feature/Bug: Tropicalization is very sensitive to choice of embeddings.
- Tropicalization is not injective; often, see tropical superabundance.
- GOAL: Use combinatorics to study real bitangents to sm. plane quartics.

Today's focus: two classical results in Algebraic Geometry
Plücker (1834): A sm. quartic curve in $\mathbb{P}_{\mathbb{C}}^{2}$ has exactly 28 bitangent lines.
Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{R}}(f) \subset \mathbb{P}_{\mathbb{R}}^{2}$).

The real curve	Real bitangents	The real curve	Real bitangents
4 ovals	28	1 oval	4
3 ovals	16	2 nested ovals	4
2 non-nested ovals	8	empty curve	4

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.
GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{\{t\}\}$ and $\mathbb{R}\{\{t\}\}$.

28 bitangent lines to sm. plane quartics over $\mathbb{K}=\overline{\mathbb{C}((t))}$.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}_{\mathbb{K}}^{2}$ has exactly 28 bitangent lines ($4,8,16$ or 28 real bitangents, depending on topology of the real curve.)

- What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^{2} has infinitely many tropical bitangents (in 7 equivalence classes.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

- Three independent answers (with different approaches):

Chan-Jiradilok (2017): Conjecture holds for tropical K_{4}-curves.
Len-Jensen (2018): Each class always lifts to 4 classical bitangents.
Len-Markwig (2020): We have an algorithm to reconstruct the 4 classical bitangents $\ell=y+m+n x$ and the tangencies under mild genericity.
Question 1: What is a tropical bitangent line? Tropical tangencies?
Question 2: What is a tropical bitangent class?
Answer: Continuous translations preserving bitangency property.

28 bitangent lines to sm. plane quartics over $\mathbb{K}=\overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^{2}.

Trop. sm. quartic $=$ dual to unimodular triangulation of Δ_{2} of side length 4.

\rightsquigarrow duality gives a genus 3 planar metric graph.

Possible cases:

28 bitangent lines to sm. plane quartics over $\mathbb{K}=\overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^{2}.

Trop. sm. quartic $=$ dual to unimodular triangulation of Δ_{2} of side length 4.

\rightsquigarrow duality gives a genus 3 planar metric graph.

Possible cases: [BLMPR '16]

Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges. Hahn-Markwig-Ren-Tyomkin (2019): Higher-dimensional linear re-embeddings realize all five graphs and with no length restrictions.

Basic facts about general tropical plane curves:
(1) Interpolation for general pts in \mathbb{R}^{2} holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
(2) General trop. plane curves intersect as expected (Trop. Bézout.)

Proper intersection at 2 pts

Non-proper intersection

Basic facts about general tropical plane curves:
(1) Interpolation for general pts in \mathbb{R}^{2} holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)
(2) General trop. plane curves intersect as expected (Trop. Bézout.)

Proper intersection at 2 pts

Stable intersection at 2 pts

Non-proper case: Replace usual intersection with stable intersection.

$$
C_{1} \cap_{s t} C_{2}:=\lim _{\underline{\varepsilon} \rightarrow(0,0)} C_{1} \cap\left(C_{2}+\underline{\varepsilon}\right) .
$$

Tropical bitangent lines to tropical smooth quartics in \mathbb{R}^{2} :

Proper tangency
vs.

Midpoint tangency

Definition: $\Lambda=\rceil$ is a bitangent line to the quartic Γ if and only if:
(i) $\Lambda \cap \Gamma$ has 2 conn. components of stable intersection mult. 2 each; or
(ii) $\Lambda \cap \Gamma$ is connected and its stable intersection multiplicity is 4 .
[L-M '20]: 6 local tangency types between \wedge and Γ (up to \mathbb{S}_{3}-symmetry).

(2)

star shape
(6b)

28 classical bitangents vs. 7 tropical bitangent classes.

28 classical bitangents vs. 7 tropical bitangent classes.

28 classical bitangents vs. 7 tropical bitangent classes.

28 classical bitangents vs. 7 tropical bitangent classes.

28 classical bitangents vs. 7 tropical bitangent classes.

Zharkov (2010): Trop. theta characteristics θ_{i} on the metric graph G :

$$
2 \theta_{i} \sim K_{G}=\sum_{x \in G}(\operatorname{val}(x)-2) x \quad ; \quad\left(\theta_{i}\right)_{i} \leftrightarrow H_{1}(G, \mathbb{Z} / 2 \mathbb{Z})
$$

28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR '16]: 7 effective trop. theta characteristics on skeleton of tropical sm. quartic Γ in \mathbb{R}^{2} produce 7 tropical bitangent lines Λ to Γ.

28 classical bitangents vs. 7 tropical bitangent classes.

[BLMPR '16]: Equiv. class $=$ move Λ continuously, staying bitangent.
[L-J '18, L-M '20]: Each bitangent class lifts to 4 classical bitangents.

28 classical bitangents vs. 7 tropical bitangent classes.

C.-Markwig (2020): There are 41 shapes of bitangent classes (up to symm.) They are min-tropical convex sets. Liftings come from vertices. Over \mathbb{R} : liftings on each class are either all (totally) real or none is real.

THM 1: Classification into 41 bitangent classes (up to \mathbb{S}_{3}-symmetry)

Bitangent line $\backslash \longleftrightarrow$ location of its vertex.

Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies.
Step 2: Identify local moves of the vertex of Λ that preserve one tangency

(1)

(5a)

(6b)

Step 3: Interpret tangency types from cells in the Newton subdivision.
Step 4: Classify the shapes using 3 properties of its members:

max. mult.	proper	min. conn. comp.	shapes
4	yes	1	(II)
4	no	1	(C),(D),(L),(L'),(O),(P),(Q),(Q'),(R),(S)
2	yes $/ \mathrm{no}$	2	rest

For the last row, refine using dimension and boundedness of its top cell.

Corollary: Partial Newton subdivisions for all 41 bitangent shapes.

(A)

(G)

(M)

$(\mathrm{H}),\left(\mathrm{H}^{\prime}\right)$
(O)

(V)
(B)

(I), (N)
(C)

(J)

(P)

(W),(EE)

(W),(GG)
(D)

(K), (U), (U')

(Q')

(W),(X),(Y)

(R)
(W),(X),(Y),(Z)
(II)

Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $\mathbb{K}=\mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}}=\mathbb{R}\{\{t\}\}$ (real P. s.)

- If $a=a_{0} t^{\alpha}+$ h.o.t. $\in \mathbb{K}$, write $\bar{a}:=a_{0}=\overline{a t^{-\alpha}}$ in \mathbb{C} (initial term).
- Assume bitangent line ℓ to $\mathcal{V}(q)$ is not vertical and all tangencies are in torus. Write $\ell: y+m+n x=0$ with $m, n \in \mathbb{K}^{*}$.
- Set $\Lambda:=\operatorname{Trop} \ell$ and $\Gamma:=\operatorname{Trop} \mathcal{V}(q)$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in\left(\mathbb{K}^{*}\right)^{2}$?
Answer: p satisfies $\ell=q=W=0$, where $W=J(\ell, q)$ is the Wronskian.
Key Prop. [L-M '20]: If $p=\left(b_{0} t^{\alpha_{0}}+\right.$ h.o.t, $b_{1} t^{\alpha_{1}}+$ h.o.t $)$, then
(i) $\left(\alpha_{0}, \alpha_{1}\right)$ is a trop. tangency pt. for Λ and Γ.
(ii) The initial degenerations $\bar{q}, \bar{\ell}, \bar{W}$ from lowest valuation terms of q, ℓ, W locally at p vanish at the initial term $\bar{p}:=\left(b_{0}, b_{1}\right)$.
Thm. [L-M '20]: We can use $\bar{q}=\bar{\ell}=\bar{W}=0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in\left(\mathbb{C}^{*}\right)^{4}$.

Lifting tropical bitangents to classical bitangents (cont)

$$
(\bar{m}, \bar{n}, \bar{p}) \text { and } \bar{q}=\bar{\ell}=\bar{W}=0 \sim ? ? ?(m, n, p) \text { and } q=\ell=W=0
$$

Multivariate Hensel's Lemma: If $J_{x, y, \bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{\mid \bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a unique solution (m, p). (Then, get n from $\ell(p)=0$.)
[L-M '20]: Analyzed local mult. 2 tangencies and saw:
(i) Tangencies in 2 ends of Λ give complementary data (\bar{m}, \bar{n} or \bar{m} / \bar{n}).
(ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition.)
[L-M'20, C-M'20]: If mult. four, no hyperflexes:

type	star	$(5 \mathrm{~b})$	$(6 \mathrm{~b})$
mult.	$2 \cdot 2$	1	1

Thm. [L-M'20]: Local solns. for mult 1 in $\mathbb{Q}\left(\overline{a_{i j}}\right)$ but otherwise in $\mathbb{Q}\left(\sqrt{\overline{a_{i j}}}\right)$.
Crucial Obs.: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ iff $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^{4}$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

THM 2: Real lifting sign conditions per representing bitangent class:

Shape	Lifting conditions
(A)	$\left(-s_{1 v} s_{1, v+1}\right)^{i} s_{0} s_{22}>0$ and $\left(-s_{u 1} s_{u+1,1}\right)^{j} s_{j 0} s_{22}>0$
(B)	$\left(-s_{1 v} s_{1, v+1}\right)^{i+1} s_{0 ;} s_{21}>0 \quad$ and $\quad\left(-s_{21}\right)^{j+1} s_{31}{ }^{j} s_{1 v} s_{1, v+1} s_{j 0}>0$
(C)	$\left\{\begin{array}{cl} \left(-s_{11} s_{12}\right)^{i} s_{0} s_{20}>0 \text { and }\left(-s_{21} s_{12}\right)^{k} s_{k, 4-k} s_{20}>0 & \text { if } j=2, \\ \left(-s_{11}\right)^{i+1} s_{12}^{i} s_{21} s_{0 i} s_{j 0}>0 \text { and }\left(-s_{21}\right)^{k+1} s_{12}^{k} s_{11} s_{k, 4-k} s_{j 0}>0 & \text { if } j=1,3 . \end{array}\right.$
(H),(H')	$\left(-s_{1 v} s_{1, v+1}\right)^{i+1} s_{0 i} s_{21}>0$ and $s_{1 v} s_{1, v+1} s_{21} s_{40}<0$
(M)	$\left(-s_{1 v} s_{1, v+1}\right)^{i+1} s_{0 i} s_{21}>0$ and $s_{1 v} s_{1, v+1} s_{30} s_{31}>0$
(D)	$\left(-s_{10} s_{11}\right)^{i} s_{0 i} s_{22}>0$
(E),(F),(J)	$\left(-s_{1 v} s_{1, v+1}\right)^{i} s_{0 i} s_{20}>0$
(G)	$\left(-s_{10} s_{11}\right)^{i} s_{0 i} s_{k, 4-k}>0$
(I),(N)	$s_{10} s_{11} s_{01} s_{k, 4-k}<0$
(K),(T),(U),(U^{\prime}), (V)	$s_{00} s_{k, 4-k}>0$
(L),(O),(P)	$s_{10} s_{11} s_{01} s_{22}<0$
(L'), (Q), (Q'), (R), (S)	$s_{00} s_{22}>0$
rest	no conditions

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.

(A)

(B)

(C)

(E)

(F)

Lifting conditions over the reals:
(1): $s_{00} s_{22}>0$;
(2): $\left(-s_{21} s_{31}\right)^{3} s_{30} s_{22}>0$ (3): none; (4): ; $\left(-s_{12} s_{13}\right)^{3} s_{03} s_{22}>0$; (5): $\left(-s_{12} s_{13}\right)^{3} s_{03} s_{22}>0,\left(-s_{21} s_{31}\right)^{3} s_{30} s_{22}>0$; (6): $-s_{12} s_{13} s_{03} s_{22}>0,\left(-s_{01} s_{11}\right)^{0} s_{00} s_{22}>0$; (7): $\left(-s_{10} s_{11}\right)^{0} s_{00} s_{22}>0,-s_{21} s_{31} s_{30} s_{22}>0$;

Negative signs	Real bitangent classes	Number or real lifts	Topology
-	(1) and (3)	8	2 non-nested ovals
s_{31}	$(1),(2),(3)$ and (7)	16	3 ovals
s_{13}, s_{31}	$(1), \ldots,(7)$	28	4 ovals
s_{13}, s_{31}, s_{22}	(3)	4	1 oval

