Combinatorics and real lifts of bitangents to tropical plane quartics

Maria Angelica Cueto

Department of Mathematics The Ohio State University

Joint work with Hannah Markwig (U. Tuebingen, Germany) (arXiv:2004.10891)

ICERM Workshop: Algebraic Geometry and Polyhedra April 12-17, 2021

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

April 13th 2021 1 / 24

Tropical Mathematics

- Feature/Bug: Tropicalization is very sensitive to choice of embeddings.
- Tropicalization is not injective; often, see tropical superabundance.
- GOAL: Use combinatorics to study real bitangents to sm. plane quartics.

Today's focus: two classical results in Algebraic Geometry Plücker (1834): A sm. quartic curve in $\mathbb{P}^2_{\mathbb{C}}$ has exactly 28 bitangent lines. Zeuthen (1873): 4, 8, 16 or 28 real bitangents (real curve: $\mathcal{V}_{\mathbb{T}}(f) \subset \mathbb{P}^2_{\mathbb{T}}$)

\mathcal{L}				
The real curve	Real bitangents	The real curve	Real bitangents	
4 ovals	28	1 oval	4	
3 ovals	16	2 nested ovals	4	
2 non-nested ovals	8	empty curve	4	

Trott: 28 totally real bitangents.

Salmon: 28 real, 24 totally real.

ISSUE: Plücker's result fails tropically! But we can fix it.

GOAL: Use tropical geometry to find bitangents over $\mathbb{C}\{\{t\}\}\$ and $\mathbb{R}\{\{t\}\}$.

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Plücker-Zeuthen: A sm. quartic curve in $\mathbb{P}^2_{\mathbb{K}}$ has exactly 28 bitangent lines (4, 8, 16 or 28 real bitangents, depending on topology of the real curve.)

• What happens tropically?

Baker-Len-Morrison-Pflueger-Ren (2016): Every tropical smooth quartic in \mathbb{R}^2 has infinitely many tropical bitangents (in **7 equivalence classes**.) Conjecture [BLMPR]: Each bitangent class hides 4 classical bitangents.

• Three independent answers (with different approaches):

Chan-Jiradilok (2017): Conjecture holds for tropical K₄-curves.

Len-Jensen (2018): Each class always lifts to 4 classical bitangents.

Len-Markwig (2020): We have an **algorithm** to reconstruct the 4 classical bitangents $\ell = y + m + nx$ and the tangencies under mild genericity.

Question 1: What is a tropical bitangent line? Tropical tangencies?

Question 2: What is a tropical bitangent class?

Answer: Continuous translations preserving bitangency property.

M.A. Cueto (Ohio State)

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

 \rightsquigarrow duality gives a genus 3 planar metric graph.

Possible cases:

28 bitangent lines to sm. plane quartics over $\mathbb{K} = \overline{\mathbb{C}((t))}$.

Theorem: There are 28 classical bitangents to sm. plane quartics over \mathbb{K} but 7 tropical bitangent classes to their smooth tropicalizations in \mathbb{R}^2 .

Trop. sm. quartic = dual to unimodular triangulation of Δ_2 of side length 4.

6 / 24

Possible cases: [BLMPR '16]

Brodsky-Joswig-Morrison-Sturmfels (2015): Newton subdivisions give linear restrictions on the lengths u, v, w, x, y, z of the edges. Hahn-Markwig-Ren-Tyomkin (2019): Higher-dimensional linear re-embeddings realize all five graphs and with no length restrictions.

Basic facts about general tropical plane curves:

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(2) General trop. plane curves intersect as expected (Trop. Bézout.)

Basic facts about general tropical plane curves:

(1) Interpolation for *general* pts in \mathbb{R}^2 holds tropically (Mikhalkin's Corresp.) (unique line through 2 gen. points, unique conic through 5 gen. points,...)

(2) General trop. plane curves intersect as expected (Trop. Bézout.)

$$C_1 \cap_{st} C_2 := \lim_{\underline{\varepsilon} \to (0,0)} C_1 \cap (C_2 + \underline{\varepsilon}).$$

Tropical bitangent lines to tropical smooth quartics in \mathbb{R}^2 :

Zharkov (2010): Trop. theta characteristics θ_i on the metric graph G: $2\theta_i \sim K_G = \sum_{x \in G} (val(x) - 2)x$; $(\theta_i)_i \leftrightarrow H_1(G, \mathbb{Z}/2\mathbb{Z})$

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

April 13th 2021 1

14 / 24

[BLMPR '16]: 7 effective trop. theta characteristics on **skeleton** of tropical sm. quartic Γ in \mathbb{R}^2 produce 7 tropical bitangent lines Λ to Γ .

M.A. Cueto (Ohio State)

C.-Markwig (2020): There are **41 shapes** of bitangent classes (up to symm.) They are **min-tropical** convex sets. Liftings come from vertices. **Over** \mathbb{R} : liftings on each class are either all (totally) real or none is real.

M.A. Cueto (Ohio State)

Tropical Bitangents to Plane Quartics

April 13th 2021

17 / 24

THM 1: Classification into 41 bitangent classes (up to S_3 -symmetry)

Proof sketch of Combinatorial classification Theorem

Step 1: Identify edge directions for Γ involved in local tangencies. **Step 2:** Identify local moves of the vertex of Λ that preserve one tangency

Step 3: Interpret tangency types from cells in the Newton subdivision.Step 4: Classify the shapes using 3 properties of its members:

max. mult.	proper	min. conn. comp.	shapes
4	yes	1	(11)
4	no	1	(C),(D),(L),(L'),(O),(P),(Q),(Q'),(R),(S)
2	yes/no	2	rest
L		1	1

For the last row, refine using dimension and boundedness of its top cell.

M.A. Cueto (Ohio State)

Corollary: Partial Newton subdivisions for all 41 bitangent shapes.

Lifting tropical bitangents to classical bitangents to $\mathcal{V}(q)$

Fix $\mathbb{K} = \mathbb{C}\{\{t\}\}$ (complex Puiseux series), $\mathbb{K}_{\mathbb{R}} = \mathbb{R}\{\{t\}\}$ (real P. s.)

- If $a = a_0 t^{\alpha} + h.o.t. \in \mathbb{K}$, write $\left| \overline{a} := a_0 = \overline{a t^{-\alpha}} \text{ in } \mathbb{C}$ (initial term) $\right|$.
- Assume bitangent line ℓ to $\mathcal{V}(q)$ is not vertical and all tangencies are in torus. Write $\ell: y + m + nx = 0$ with $m, n \in \mathbb{K}^*$.
- Set $\Lambda := \operatorname{Trop} \ell$ and $\Gamma := \operatorname{Trop} \mathcal{V}(q)$.

Question: When is ℓ tangent to $\mathcal{V}(q)$ at $p \in (\mathbb{K}^*)^2$? **Answer:** p satisfies $\ell = q = W = 0$, where $W = J(\ell, q)$ is the **Wronskian**.

Key Prop. [L-M '20]: If $p = (b_0 t^{\alpha_0} + h.o.t, b_1 t^{\alpha_1} + h.o.t)$, then

- (i) (α_0, α_1) is a **trop. tangency pt.** for Λ and Γ .
- (ii) The initial degenerations $\bar{q}, \bar{\ell}, \bar{W}$ from **lowest valuation terms** of q, ℓ, W locally at p **vanish** at the initial term $\bar{p} := (b_0, b_1)$.

Thm. [L-M '20]: We can use $\bar{q} = \bar{\ell} = \bar{W} = 0$ to find $(\bar{m}, \bar{n}, \bar{p}) \in (\mathbb{C}^*)^4$.

$$(ar{m},ar{n},ar{p})$$
 and $ar{q}=ar{\ell}=ar{W}=0$ \longrightarrow (m,n,p) and $q=\ell=W=0$

Multivariate Hensel's Lemma: If $J_{x,y,\bar{m}}(\bar{q}, \bar{\ell}, \bar{W})_{|\bar{p}} \neq 0$, then (\bar{m}, \bar{p}) lifts to a **unique solution** (m, p). (Then, get *n* from $\ell(p) = 0$.)

[L-M '20]: Analyzed local mult. 2 tangencies and saw:

- (i) Tangencies in 2 ends of Λ give complementary data $(\bar{m}, \bar{n} \text{ or } \bar{m}/\bar{n})$.
- (ii) Tangencies in same end of Λ with $\Lambda \cap \Gamma$ disconnected give non-compatible local equations (genericity condition.)

[L-M'20, C-M'20]: If mult. four, no hyperflexes:

type	star	(5b)	(6b)
nult.	2 · 2	1	1

Thm.[L-M'20]: Local solns. for mult 1 in $\mathbb{Q}(\overline{a_{ij}})$ but otherwise in $\mathbb{Q}(\sqrt{\overline{a_{ij}}})$

Crucial Obs.: Lifting lies in $\mathbb{K}_{\mathbb{R}}$ iff $(\bar{m}, \bar{n}, \bar{p}) \in \mathbb{R}^4$ and $q(x, y) \in \mathbb{K}_{\mathbb{R}}[x, y]$.

THM 2: Real lifting sign conditions per representing bitangent class:

Shape	Lifting conditions			
(A)	$(-s_{1v}s_{1,v+1})^i s_{0i}s_{22} > 0$ and $(-s_{u1}s_{u+1,1})^j s_{j0}s_{22} > 0$			
(B)	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $(-s_{21})^{j+1}s_{31}{}^{j}s_{1\nu}s_{1,\nu+1}s_{j0}>0$			
	$\int (-s_{11}s_{12})^i s_{0i}s_{20} > 0 \text{ and } (-s_{21}s_{12})^k s_{k,4-k}s_{20} > 0 \text{ if } j = 2,$			
(C)	$\left \left((-s_{11})^{i+1} s_{12}^i s_{21} s_{0i} s_{j0} > 0 \text{ and } (-s_{21})^{k+1} s_{12}^k s_{11} s_{k,4-k} s_{j0} > 0 \right. \text{ if } j = 1,3.$			
(H),(H')	$(-s_{1\nu}s_{1,\nu+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1\nu}s_{1,\nu+1}s_{21}s_{40}<0$			
(M)	$(-s_{1 u}s_{1, u+1})^{i+1}s_{0i}s_{21}>0$ and $s_{1 u}s_{1, u+1}s_{30}s_{31}>0$			
(D)	$(-s_{10}s_{11})^i s_{0i}s_{22} > 0$			
(E),(F),(J)	$(-s_{1v}s_{1,v+1})^i s_{0i} s_{20} > 0$			
(G)	$(-s_{10}s_{11})^i s_{0i} s_{k,4-k} > 0$			
(I),(N)	$s_{10}s_{11}s_{01}s_{k,4-k} < 0$			
(K),(T),(U),(U'),(V)	$s_{00}s_{k,4-k}>0$			
(L),(O),(P)	$s_{10}s_{11}s_{01}s_{22} < 0$			
$(L'),(Q),(\overline{Q'}),(R),(S)$	$s_{00}s_{22} > 0$			
rest	no conditions			

Indices: relevant vertices in the Newton subdivision for each tangency, e.g.

M.A. Cueto (Ohio State)

April 13th 2021 23 / 24

Lifting conditions over the reals: (1): $s_{00}s_{22} > 0$; (2): $(-s_{21}s_{31})^3 s_{30}s_{22} > 0$ (3): none; (4): ; $(-s_{12}s_{13})^3 s_{03}s_{22} > 0$; (5): $(-s_{12}s_{13})^3 s_{03}s_{22} > 0$, $(-s_{21}s_{31})^3 s_{30}s_{22} > 0$; (6): $-s_{12}s_{13}s_{03}s_{22} > 0$, $(-s_{01}s_{11})^0 s_{00}s_{22} > 0$; (7): $(-s_{10}s_{11})^0 s_{00}s_{22} > 0$; (7): $(-s_{10}s_{11})^0 s_{00}s_{22} > 0$;

Negative signs	Real bitangent classes	Number or real lifts	Topology
—	(1) and (3)	8	2 non-nested ovals
<i>s</i> ₃₁	(1), (2), (3) and (7)	16	3 ovals
<i>s</i> ₁₃ , <i>s</i> ₃₁	$(1), \dots, (7)$	28	4 ovals
<i>s</i> ₁₃ , <i>s</i> ₃₁ , <i>s</i> ₂₂	(3)	4	1 oval

M.A. Cueto (Ohio State)