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Gr(k,n;F) := {W CF" | dim(W) = k}= {k x n matrices of rank k}/(row operations).

e How many points in Gr(k,n;Fq)?

e What is the Poincaré polynomial of Gr(k, n; C)?

[Ng:=1+qg+---+q"% [nlg!:=[1s2q - [nlg, [”] : [n]q!

k| TKgl[n— K]g"

e Point count: # Gr(k,mFq) = [ﬂq.
e Poincaré polynomial: Y, g’ dim H?(Gr(k, n; C)) = [ﬂq.

@ Reason: Schubert decomposition.
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e Point count: #A(Fq) = x(A; q);
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e Option 1: C] ,(q) = L[]

[a+Blq q p
e Option 2: C}/(q) = ZPeDycka’b garea(P),
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Theorem (G.—Lam (2020))

Let gcd(k,n) = 1. Then the point count and the Poincaré polynomial of T k.n are

#ni,n(Fq) = (q — 1)n—1 : Cll(,n—k(q)7 P(”Z,n? q) = (q + l)n_l k n— k(q )

Corollary: a uniformly random point of Gr(k, n; ;) belongs to Iy  (Fq) with probability
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<— does not depend on k7!
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ab q7 _ Z qarea P)tdlnv( )
PeDyck,
: h is to the left of v and
dinv(P) := {(h’ V) there is a line of slope a/b intersecting h and v }

Gs(g,t)= ¢*t° + ¢t + ¢*t> + ¢*tt + ' + ¢'t* + %!
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Theorem (G.—Lam (2020))

Let gcd(k, n) = 1. Then the bigraded Poincaré polynomial of My , is given by

n—1
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@ The subgroup T C SL,(C) of diagonal n x n matrices acts freely on My , and
73( i,n/ T; q, t) - Ck,nfk(q7 t)
e Corollary 1: g, t-symmetry C, 5(q,t) = C,(t, q).

d=1t .., t9 form a unimodal sequence Vd.

e Corollary 2: the coefficients at g9, g

@ Catalan case b = a + 1: both properties follow from Haiman '94, '02.

@ Arbitrary a, b: symmetry follows from Mellit '16, unimodality appears new.
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e Let G =SL,(C), B, B_ are subgroups of upper and lower triangular matrices.
o G/B =flag variety.
@ Open Richardson varieties: for v<w € S,, R}, := (BwB N B_vB)/B.
@ This recovers open positroid varieties when w is Grassmannian, i.e.,
w(l) <--- < w(k)and wk+1) <--- < w(n).
o Iy =Ry, where w(i) =i+ n—kmodulonforalli=12... n

@ T-action on Ry, is free iff c(wv™1) =1, where c denotes the number of cycles.

Theorem (G.—Lam (2020))

If c(wv=1) =1 then
P(RS’W/T; q,t) =777
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@ Given u € 5, choose a reduced word u = s;;sj, - - - 5.
@ Make each crossing into a positive braid crossing, get braid 5(u)

e For v < w, set B, := B(w) - B(v) .
1 1 A1
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@ Given u € 5, choose a reduced word u = s;;sj, - - - 5.

@ Make each crossing into a positive braid crossing, get braid 5(u)

e For v < w, set B, := B(w) - B(v)™ .

@ The rainbow closure BV,W is called the Richardson link associated to Ry ,.
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@ Given u € 5, choose a reduced word u = s;;sj, - - - 5.

@ Make each crossing into a positive braid crossing, get braid 5(u)

e For v < w, set B, := B(w) - B(v)™ .

@ The rainbow closure BV,W is called the Richardson link associated to Ry .

@ When c(wv’l) =1, BA\,,W is a knot, i.e., has a unique connected component.

1 1 1 A1

2 2 2~/ ALY

3 3 37 / 3

4 4 4 4

U = 55153551 positive braid lift 5(u)

1 ; ; /—/_\/—'
2~/ —\ / )
s N N )
4 ‘ —

braid 3, ., = B(w) - B(v)™! Richardson knot f3,.,,



Given a link L, the HOMFLY polynomial P(L; a, q) is defined by P((O) =1 and
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Thanks!












