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Gr(k , n;F) := {W ⊆ Fn | dim(W ) = k}

= {k × n matrices of rank k}/(row operations).

Question
How many points in Gr(k , n;Fq)?

What is the Poincaré polynomial of Gr(k , n;C)?

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q · · · [n]q,

[
n

k

]
q

:=
[n]q!

[k]q![n − k]q!
.

Point count: # Gr(k , n;Fq) =
[
n
k

]
q
.

Poincaré polynomial:
∑

i q
i dimH2i(Gr(k , n;C)) =

[
n
k

]
q
.

Reason: Schubert decomposition.
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Let A be a hyperplane arrangement in Fn and Ac := Fn \ A.

Point count: #Ac(Fq) = χ(A; q);
Poincaré polynomial:

∑
i q

i dimH i(Ac(C)) = (−q)dχ(A;−1/q).

Reason:

the mixed Hodge structure on H•(Gr(k , n)) and H•(Ac) is pure.

For an arbitrary algebraic variety Z , we have a canonical Deligne splitting

H i(Z ) =
⊕
p,r∈Z

H i ,(p,r)(Z )

H2i(Gr(k , n)) = H2i ,(i ,i)(Gr(k , n))

, H i(Ac) = H i ,(i ,i)(Ac).

We will always have H i(Z ) =
⊕
p∈Z

H i ,(p,p) (“Hodge–Tate type”).

This gives rise to the bigraded Poincaré polynomial
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Poincaré polynomial:

∑
i q

i dimH i(Ac(C)) = (−q)dχ(A;−1/q).

Reason: the mixed Hodge structure on H•(Gr(k , n)) and H•(Ac) is pure.

For an arbitrary algebraic variety Z , we have a canonical Deligne splitting

H i(Z ) =
⊕
p,r∈Z

H i ,(p,r)(Z )

H2i(Gr(k , n)) = H2i ,(i ,i)(Gr(k , n))

, H i(Ac) = H i ,(i ,i)(Ac).

We will always have H i(Z ) =
⊕
p∈Z

H i ,(p,p) (“Hodge–Tate type”).

This gives rise to the bigraded Poincaré polynomial
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, where d := dimZ .
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Positroid varieties

Gr(k , n;F) := {W ⊆ Fn | dim(W ) = k} = {k × n matrices of rank k}/(row operations).

Gr(k , n) is stratified into open positroid varieties. Here’s the top-dimensional one:

Π◦k,n := {X ∈ Gr(k , n) | ∆1,...,k(X ),∆2,...,k+1(X ), . . . ,∆n,1,...,k−1(X ) 6= 0},

where ∆I (X ) =maximal minor of X with column set I .

Example

Π◦2,4
∼=
{(

1 0 a b
0 1 c d

)∣∣∣∣a 6= 0, d 6= 0, ad − bc 6= 0

}
.

Point count? Poincaré polynomial? P(Π◦k,n; q, t)?
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Point count? Poincaré polynomial? P(Π◦k,n; q, t)?



Rational Catalan numbers: for a, b > 1 such that gcd(a, b) = 1, let

Ca,b :=
1

a + b

(
a + b

a

)
.

Includes the usual Catalan numbers: Ca,a+1 = 1
a+1

(
2a
a

)
.

Counts the number of Dyck paths inside an a × b rectangle. E.g. C3,5 = 7:

[
a + b

a

]
q

:=
[a + b]q!

[a]q![b]q!
=
∑
λ⊆a×b

q|λ|.

Question
What is “the” q-analog of Ca,b?

Option 1: C ′a,b(q) = 1
[a+b]q

[
a+b
a

]
q
.

Option 2: C ′′a,b(q) =
∑

P∈Dycka,b
qarea(P).
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Question
What is “the” q-analog of Ca,b?

Option 1: C ′a,b(q) = 1
[a+b]q

[
a+b
a

]
q
.

Option 2: C ′′a,b(q) =
∑

P∈Dycka,b
qarea(P).

a = 3, b = 5 : Ca,b = 7, 1
[a+b]q

[
a+b
a

]
q

= q8 + q6 + q5 + q4 + q3 + q2 + 1.

∑
P∈Dycka,b

qarea(P)= q4 + q3 + q2 + q2 + q1 + q1 + q0

The answers are different!

Theorem (G.–Lam (2020))

Let gcd(k , n) = 1. Then the point count and the Poincaré polynomial of Π◦k,n are
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Rational q, t-Catalan numbers: (introduced by Garsia–Haiman (1996) and Loehr–Warrington (2009))

Ca,b(q, t) :=
∑

P∈Dycka,b

qarea(P)tdinv(P).

dinv(P) := #

{
(h, v)

∣∣∣∣ h is to the left of v and
there is a line of slope a/b intersecting h and v

}

C3,5(q, t) = q4t0 + q3t1 + q2t2 + q2t1 + q1t3 + q1t2 + q0t4

Theorem (G.–Lam (2020))

Let gcd(k , n) = 1. Then the bigraded Poincaré polynomial of Π◦k,n is given by

P(Π◦k,n; q, t) =
(
q

1
2 + t

1
2

)n−1
Ck,n−k(q, t).
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P(Π◦k,n; q, t) =
(
q

1
2 + t

1
2

)n−1
Ck,n−k(q, t).



Theorem (G.–Lam (2020))

Let gcd(k , n) = 1. Then the bigraded Poincaré polynomial of Π◦k,n is given by

P(Π◦k,n; q, t) =
(
q

1
2 + t

1
2

)n−1
Ck,n−k(q, t).

The subgroup T ⊆ SLn(C) of diagonal n × n matrices acts freely on Π◦k,n and
P(Π◦k,n/T ; q, t) = Ck,n−k(q, t).

Corollary 1: q, t-symmetry Ca,b(q, t) = Ca,b(t, q).

Corollary 2: the coefficients at qd , qd−1t, . . . , td form a unimodal sequence ∀d .

Catalan case b = a + 1: both properties follow from Haiman ’94, ’02.

Arbitrary a, b: symmetry follows from Mellit ’16, unimodality appears new.

[LS16] Thomas Lam and David E. Speyer. Cohomology of cluster varieties. I. Locally acyclic case. arXiv:1604.06843.

[Sco06] J. S. Scott. Grassmannians and cluster algebras. Proc. Lond. Math. Soc. (3), 92(2):345–380, 2006.
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https://arxiv.org/abs/1604.06843
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Let G = SLn(C), B ,B− are subgroups of upper and lower triangular matrices.

G/B =flag variety.

Open Richardson varieties: for v 6 w ∈ Sn, R◦v ,w := (BwB ∩ B−vB)/B .

This recovers open positroid varieties when w is Grassmannian, i.e.,
w(1) < · · · < w(k) and w(k + 1) < · · · < w(n).

Π◦k,n
∼= R◦id,w , where w(i) ≡ i + n − k modulo n for all i = 1, 2, . . . , n.

T -action on R◦v ,w is free iff c(wv−1) = 1, where c denotes the number of cycles.

Theorem (G.–Lam (2020))

If c(wv−1) = 1 then
P(R◦v ,w/T ; q, t) = ???
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Given u ∈ Sn, choose a reduced word u = si1si2 · · · si`.

Make each crossing into a positive braid crossing, get braid β(u)
For v 6 w , set βv ,w := β(w) · β(v)−1.

The rainbow closure β̂v ,w is called the Richardson link associated to R◦v ,w .

When c(wv−1) = 1, β̂v ,w is a knot, i.e., has a unique connected component.
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Given a link L, the HOMFLY polynomial P(L; a, q) is defined by P( ) = 1 and

aP(L+)− a−1P(L−) =
(
q

1
2 − q−

1
2

)
P(L0), where

L+ L− L0

Khovanov–Rozansky homology yields PKR(L; a, q, t) generalizing P(L; a, q).

Theorem (G.–Lam (2020))

Let c(wv−1) = 1. #(R◦v ,w/T )(Fq) = top a-degree term of P(β̂v ,w ; a, q);

P(R◦v ,w/T ; q, t) = top a-degree term of PKR(β̂v ,w ; a, q, t).

For c(wv−1) > 1, take the T -equivariant cohomology of R◦v ,w with compact support instead.

G.–Lam (2021+): q = t = 1 specialization, Dyck paths above a convex shape.

Thanks!
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