Positroids, knots, and q, t-Catalan numbers

Pavel Galashin (UCLA)

March 26, 2021

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}$

$$
\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n \text { matrices of rank } k\} /(\text { row operations). }
$$

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
- What is the Poincaré polynomial of $\operatorname{Gr}(k, n ; \mathbb{C})$?
$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
- What is the Poincaré polynomial of $\operatorname{Gr}(k, n ; \mathbb{C})$?

$$
[n]_{q}:=1+q+\cdots+q^{n-1}, \quad[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
- What is the Poincaré polynomial of $\operatorname{Gr}(k, n ; \mathbb{C})$?

$$
[n]_{q}:=1+q+\cdots+q^{n-1}, \quad[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

- Point count:

$$
\# \operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)=\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} .
$$

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
- What is the Poincaré polynomial of $\operatorname{Gr}(k, n ; \mathbb{C})$?

$$
[n]_{q}:=1+q+\cdots+q^{n-1}, \quad[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

- Point count:

$$
\# \operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)=\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} .
$$

- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{2 i}(\operatorname{Gr}(k, n ; \mathbb{C}))=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.
$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Question

- How many points in $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$?
- What is the Poincaré polynomial of $\operatorname{Gr}(k, n ; \mathbb{C})$?

$$
[n]_{q}:=1+q+\cdots+q^{n-1}, \quad[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

- Point count:

$$
\# \operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)=\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} .
$$

- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{2 i}(\operatorname{Gr}(k, n ; \mathbb{C}))=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.
- Reason: Schubert decomposition.
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count:

$$
\# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q) ;
$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: ???
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z)
$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
\begin{gathered}
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z) \\
H^{2 i}(\operatorname{Gr}(k, n))=H^{2 i,(i, i)}(\operatorname{Gr}(k, n))
\end{gathered}
$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
\begin{gathered}
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z) \\
H^{2 i}(\operatorname{Gr}(k, n))=H^{2 i,(i, i)}(\operatorname{Gr}(k, n)), \quad H^{i}\left(\mathcal{A}^{c}\right)=H^{i,(i, i)}\left(\mathcal{A}^{c}\right) .
\end{gathered}
$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
\begin{gathered}
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z) \\
H^{2 i}(\operatorname{Gr}(k, n))=H^{2 i,(i, i)}(\operatorname{Gr}(k, n)), \quad H^{i}\left(\mathcal{A}^{c}\right)=H^{i,(i, i)}\left(\mathcal{A}^{c}\right) .
\end{gathered}
$$

- We will always have $H^{i}(Z)=\bigoplus_{p \in \mathbb{Z}} H^{i,(p, p)}$ ("Hodge-Tate type").
- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
\begin{gathered}
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z) \\
H^{2 i}(\operatorname{Gr}(k, n))=H^{2 i,(i, i)}(\operatorname{Gr}(k, n)), \quad H^{i}\left(\mathcal{A}^{c}\right)=H^{i,(i, i)}\left(\mathcal{A}^{c}\right) .
\end{gathered}
$$

- We will always have $H^{i}(Z)=\bigoplus H^{i,(p, p)}$ ("Hodge-Tate type"). $p \in \mathbb{Z}$
- This gives rise to the bigraded Poincaré polynomial $\mathcal{P}(Z ; q, t) \in \mathbb{N}[q, t]$

$$
\mathcal{P}(Z ; q, t):=\sum_{i, p \in \mathbb{Z}} q^{i} t^{p} \operatorname{dim} H^{i,(p, p)}(Z)
$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^{n} and $\mathcal{A}^{c}:=\mathbb{F}^{n} \backslash \mathcal{A}$.
- Point count: $\quad \# \mathcal{A}^{c}\left(\mathbb{F}_{q}\right)=\chi(\mathcal{A} ; q)$;
- Poincaré polynomial: $\sum_{i} q^{i} \operatorname{dim} H^{i}\left(\mathcal{A}^{c}(\mathbb{C})\right)=(-q)^{d} \chi(\mathcal{A} ;-1 / q)$.
- Reason: the mixed Hodge structure on $H^{\bullet}(\operatorname{Gr}(k, n))$ and $H^{\bullet}\left(\mathcal{A}^{c}\right)$ is pure.

For an arbitrary algebraic variety Z, we have a canonical Deligne splitting

$$
\begin{gathered}
H^{i}(Z)=\bigoplus_{p, r \in \mathbb{Z}} H^{i,(p, r)}(Z) \\
H^{2 i}(\operatorname{Gr}(k, n))=H^{2 i,(i, i)}(\operatorname{Gr}(k, n)), \quad H^{i}\left(\mathcal{A}^{c}\right)=H^{i,(i, i)}\left(\mathcal{A}^{c}\right) .
\end{gathered}
$$

- We will always have $H^{i}(Z)=\bigoplus H^{i,(p, p)}$ ("Hodge-Tate type"). $p \in \mathbb{Z}$
- This gives rise to the bigraded Poincaré polynomial $\mathcal{P}(Z ; q, t) \in \mathbb{N}\left[q^{\frac{1}{2}}, t^{\frac{1}{2}}\right]$

$$
\mathcal{P}(Z ; q, t):=\sum_{i, p \in \mathbb{Z}} q^{p-\frac{i}{2}} t^{\frac{d-i}{2}} \operatorname{dim} H^{i,(p, p)}(Z), \quad \text { where } d:=\operatorname{dim} Z .
$$

Positroid varieties

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$.

Positroid varieties

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$. $\operatorname{Gr}(k, n)$ is stratified into open positroid varieties. Here's the top-dimensional one:

Positroid varieties

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$. $\operatorname{Gr}(k, n)$ is stratified into open positroid varieties. Here's the top-dimensional one:

$$
\Pi_{k, n}^{\circ}:=\left\{X \in \operatorname{Gr}(k, n) \mid \Delta_{1, \ldots, k}(X), \Delta_{2, \ldots, k+1}(X), \ldots, \Delta_{n, 1, \ldots, k-1}(X) \neq 0\right\}
$$

where $\Delta_{l}(X)=$ maximal minor of X with column set I.

Positroid varieties

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$. $\operatorname{Gr}(k, n)$ is stratified into open positroid varieties. Here's the top-dimensional one:

$$
\Pi_{k, n}^{\circ}:=\left\{X \in \operatorname{Gr}(k, n) \mid \Delta_{1, \ldots, k}(X), \Delta_{2, \ldots, k+1}(X), \ldots, \Delta_{n, 1, \ldots, k-1}(X) \neq 0\right\}
$$

where $\Delta_{l}(X)=$ maximal minor of X with column set I.

Example

$$
\Pi_{2,4}^{\circ} \cong\left\{\left.\left(\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right) \right\rvert\, a \neq 0, d \neq 0, a d-b c \neq 0\right\} .
$$

Positroid varieties

$\operatorname{Gr}(k, n ; \mathbb{F}):=\left\{W \subseteq \mathbb{F}^{n} \mid \operatorname{dim}(W)=k\right\}=\{k \times n$ matrices of rank $k\} /($ row operations $)$. $\operatorname{Gr}(k, n)$ is stratified into open positroid varieties. Here's the top-dimensional one:

$$
\Pi_{k, n}^{\circ}:=\left\{X \in \operatorname{Gr}(k, n) \mid \Delta_{1, \ldots, k}(X), \Delta_{2, \ldots, k+1}(X), \ldots, \Delta_{n, 1, \ldots, k-1}(X) \neq 0\right\}
$$

where $\Delta_{l}(X)=$ maximal minor of X with column set I.

Example

$$
\Pi_{2,4}^{\circ} \cong\left\{\left.\left(\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right) \right\rvert\, a \neq 0, d \neq 0, a d-b c \neq 0\right\} .
$$

- Point count? Poincaré polynomial? $\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)$?
- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5}=7$:

- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5}=7$:

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}:=\frac{[a+b]_{q}!}{[a]_{q}![b]_{q}!}=\sum_{\lambda \subseteq a \times b} q^{|\lambda|} .
$$

- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5}=7$:

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}:=\frac{[a+b]_{q}!}{[a]_{q}![b]_{q}!}=\sum_{\lambda \subseteq a \times b} q^{|\lambda|}
$$

Question

What is "the" q-analog of $C_{a, b}$?

- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5}=7$:

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}:=\frac{[a+b]_{q}!}{[a]_{q}![b]_{q}!}=\sum_{\lambda \subseteq a \times b} q^{|\lambda|}
$$

Question

What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Rational Catalan numbers: for $a, b \geqslant 1$ such that $\operatorname{gcd}(a, b)=1$, let

$$
C_{a, b}:=\frac{1}{a+b}\binom{a+b}{a} .
$$

- Includes the usual Catalan numbers: $C_{a, a+1}=\frac{1}{a+1}\binom{2 a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5}=7$:

$$
\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}:=\frac{[a+b]_{q}!}{[a]_{q}![b]_{q}!}=\sum_{\lambda \subseteq a \times b} q^{|\lambda|}
$$

Question

What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.

Question
What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.

Question
What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7, \quad \frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.

Question

What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7, \quad \frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.
$\sum_{P \in \operatorname{Dyck}}^{\mathrm{k}, \mathrm{b}} \mid q^{\operatorname{area}(P)}=q^{4}+q^{3}+q^{2}+q^{2}+q^{1}+q^{1}+q^{0}$

Question

What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7, \quad \frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.
$\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}=q^{4}+q^{3}+q^{2}+q^{2}+q^{1}+q^{1}+q^{0}$
The answers are different!

Question

What is "the" q-analog of $C_{a, b}$?

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7$,
$\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.
$\sum \quad \underset{q^{\text {rea }}(P)}{-q^{4}}$

The answers are different!

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the point count and the Poincaré polynomial of $\Pi_{k, n}^{\circ}$ are

$$
\# \Pi_{k, n}^{\circ}\left(\mathbb{F}_{q}\right)=(q-1)^{n-1} \cdot C_{k, n-k}^{\prime}(q), \quad \mathcal{P}\left(\Pi_{k, n}^{\circ} ; q\right)=(q+1)^{n-1} \cdot C_{k, n-k}^{\prime \prime}\left(q^{2}\right) .
$$

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}}^{a, b} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7, \quad \frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.

The answers are different!

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the point count and the Poincaré polynomial of $\Pi_{k, n}^{\circ}$ are

$$
\# \Pi_{k, n}^{\circ}\left(\mathbb{F}_{q}\right)=(q-1)^{n-1} \cdot C_{k, n-k}^{\prime}(q), \quad \mathcal{P}\left(\Pi_{k, n}^{\circ} ; q\right)=(q+1)^{n-1} \cdot C_{k, n-k}^{\prime \prime}\left(q^{2}\right) .
$$

Corollary: a uniformly random point of $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$ belongs to $\Pi_{k, n}^{\circ}\left(\mathbb{F}_{q}\right)$ with probability

$$
\frac{(q-1)^{n}}{q^{n}-1}
$$

- Option 1: $C_{a, b}^{\prime}(q)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}$.
- Option 2: $C_{a, b}^{\prime \prime}(q)=\sum_{P \in \operatorname{Dyck}}^{a, b} q^{\text {area }(P)}$.
$a=3, b=5: \quad C_{a, b}=7, \quad \frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}=q^{8}+q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+1$.

The answers are different!

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the point count and the Poincaré polynomial of $\Pi_{k, n}^{\circ}$ are

$$
\# \Pi_{k, n}^{\circ}\left(\mathbb{F}_{q}\right)=(q-1)^{n-1} \cdot C_{k, n-k}^{\prime}(q), \quad \mathcal{P}\left(\Pi_{k, n}^{\circ} ; q\right)=(q+1)^{n-1} \cdot C_{k, n-k}^{\prime \prime}\left(q^{2}\right) .
$$

Corollary: a uniformly random point of $\operatorname{Gr}\left(k, n ; \mathbb{F}_{q}\right)$ belongs to $\Pi_{k, n}^{\circ}\left(\mathbb{F}_{q}\right)$ with probability

$$
\frac{(q-1)^{n}}{q^{n}-1}
$$

\longleftarrow does not depend on $k ?!$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009))

$$
C_{a, b}(q, t):=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} .
$$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009))

$$
C_{a, b}(q, t):=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} .
$$

$$
\operatorname{dinv}(P):=\#\left\{(h, v) \left\lvert\, \begin{array}{c}
h \text { is to the left of } v \text { and } \\
\text { there is a line of slope } a / b \text { intersecting } h \text { and } v
\end{array}\right.\right\}
$$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009))

$$
C_{a, b}(q, t):=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} .
$$

$\operatorname{dinv}(P):=\#\left\{(h, v) \left\lvert\, \begin{array}{c}h \text { is to the left of } v \text { and } \\ \text { there is a line of slope } a / b \text { intersecting } h \text { and } v\end{array}\right.\right\}$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009))

$$
C_{a, b}(q, t):=\sum_{P \in \operatorname{Dyck}_{a, b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} .
$$

$$
\operatorname{dinv}(P):=\#\left\{(h, v) \left\lvert\, \begin{array}{r}
h \text { is to the left of } v \text { and } \\
\text { there is a line of slope } a / b \text { intersecting } h \text { and } v
\end{array}\right.\right\}
$$

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq S L_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and $\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t)$.

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq \operatorname{SL}_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and $\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t)$.
- Corollary 1: q, t-symmetry $C_{a, b}(q, t)=C_{a, b}(t, q)$.

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq \operatorname{SL}_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and $\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t)$.
- Corollary 1: q, t-symmetry $C_{a, b}(q, t)=C_{a, b}(t, q)$.
- Corollary 2: the coefficients at $q^{d}, q^{d-1} t, \ldots, t^{d}$ form a unimodal sequence $\forall d$.

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq \operatorname{SL}_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and $\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t)$.
- Corollary 1: q, t-symmetry $C_{a, b}(q, t)=C_{a, b}(t, q)$.
- Corollary 2: the coefficients at $q^{d}, q^{d-1} t, \ldots, t^{d}$ form a unimodal sequence $\forall d$.
- Catalan case $b=a+1$: both properties follow from Haiman '94, '02.

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq \operatorname{SL}_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and $\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t)$.
- Corollary 1: q, t-symmetry $C_{a, b}(q, t)=C_{a, b}(t, q)$.
- Corollary 2: the coefficients at $q^{d}, q^{d-1} t, \ldots, t^{d}$ form a unimodal sequence $\forall d$.
- Catalan case $b=a+1$: both properties follow from Haiman '94, '02.
- Arbitrary a, b : symmetry follows from Mellit '16, unimodality appears new.

Theorem (G.-Lam (2020))

Let $\operatorname{gcd}(k, n)=1$. Then the bigraded Poincaré polynomial of $\Pi_{k, n}^{\circ}$ is given by

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} ; q, t\right)=\left(q^{\frac{1}{2}}+t^{\frac{1}{2}}\right)^{n-1} C_{k, n-k}(q, t) .
$$

- The subgroup $T \subseteq S L_{n}(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k, n}^{\circ}$ and

$$
\mathcal{P}\left(\Pi_{k, n}^{\circ} / T ; q, t\right)=C_{k, n-k}(q, t) .
$$

- Corollary 1: q, t-symmetry $C_{a, b}(q, t)=C_{a, b}(t, q)$.
- Corollary 2: the coefficients at $q^{d}, q^{d-1} t, \ldots, t^{d}$ form a unimodal sequence $\forall d$.
- Catalan case $b=a+1$: both properties follow from Haiman '94, '02.
- Arbitrary a, b : symmetry follows from Mellit '16, unimodality appears new.
[LS16] Thomas Lam and David E. Speyer. Cohomology of cluster varieties. I. Locally acyclic case. arXiv:1604. 06843.
[Sco06] J. S. Scott. Grassmannians and cluster algebras. Proc. Lond. Math. Soc. (3), 92(2):345-380, 2006.
[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_{n}, R_{v, w}^{\circ}:=\left(B w B \cap B_{-} v B\right) / B$.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_{n}, R_{v, w}^{\circ}:=\left(B w B \cap B_{-} v B\right) / B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1)<\cdots<w(k)$ and $w(k+1)<\cdots<w(n)$.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_{n}, R_{v, w}^{\circ}:=\left(B w B \cap B_{-} v B\right) / B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1)<\cdots<w(k)$ and $w(k+1)<\cdots<w(n)$.
- $\Pi_{k, n}^{\circ} \cong R_{\mathrm{id}, w}^{\circ}$, where $w(i) \equiv i+n-k$ modulo n for all $i=1,2, \ldots, n$.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_{n}, R_{v, w}^{\circ}:=\left(B w B \cap B_{-} v B\right) / B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1)<\cdots<w(k)$ and $w(k+1)<\cdots<w(n)$.
- $\Pi_{k, n}^{\circ} \cong R_{\text {id }, w}^{\circ}$, where $w(i) \equiv i+n-k$ modulo n for all $i=1,2, \ldots, n$.
- T-action on $R_{v, w}^{\circ}$ is free iff $c\left(w v^{-1}\right)=1$, where c denotes the number of cycles.
- Let $G=\mathrm{SL}_{n}(\mathbb{C}), B, B_{-}$are subgroups of upper and lower triangular matrices.
- $G / B=$ flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_{n}, R_{v, w}^{\circ}:=\left(B w B \cap B_{-} v B\right) / B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1)<\cdots<w(k)$ and $w(k+1)<\cdots<w(n)$.
- $\Pi_{k, n}^{\circ} \cong R_{\text {id }, w}^{\circ}$, where $w(i) \equiv i+n-k$ modulo n for all $i=1,2, \ldots, n$.
- T-action on $R_{v, w}^{\circ}$ is free iff $c\left(w v^{-1}\right)=1$, where c denotes the number of cycles.

Theorem (G.-Lam (2020))

If $c\left(w v^{-1}\right)=1$ then

$$
\mathcal{P}\left(R_{v, w}^{\circ} / T ; q, t\right)=? ? ?
$$

- Given $u \in S_{n}$, choose a reduced word $u=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$.

- Given $u \in S_{n}$, choose a reduced word $u=s_{i_{1}} s_{i_{2}} \cdots s_{i_{e}}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$

- Given $u \in S_{n}$, choose a reduced word $u=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leqslant w$, set $\beta_{v, w}:=\beta(w) \cdot \beta(v)^{-1}$.

- Given $u \in S_{n}$, choose a reduced word $u=s_{i_{1}} s_{i_{2}} \cdots s_{i_{e}}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leqslant w$, set $\beta_{v, w}:=\beta(w) \cdot \beta(v)^{-1}$.
- The rainbow closure $\hat{\beta}_{v, w}$ is called the Richardson link associated to $R_{v, w}^{\circ}$.

- Given $u \in S_{n}$, choose a reduced word $u=s_{i_{1}} s_{i_{2}} \cdots s_{i_{e}}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leqslant w$, set $\beta_{v, w}:=\beta(w) \cdot \beta(v)^{-1}$.
- The rainbow closure $\hat{\beta}_{v, w}$ is called the Richardson link associated to $R_{v, w}^{\circ}$.
- When $c\left(w v^{-1}\right)=1, \hat{\beta}_{v, w}$ is a knot, i.e., has a unique connected component.

Richardson knot $\hat{\beta}_{v, w}$

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \text { where } \text { L }_{+}{L_{-}}_{L_{0}}
$$

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \text { where } \frac{L_{+}}{L_{-}}
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \text { where } \underset{L_{+}}{L_{-}}
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Theorem (G.-Lam (2020))

Let $c\left(w v^{-1}\right)=1 . \quad \#\left(R_{v, w}^{\circ} / T\right)\left(\mathbb{F}_{q}\right)=$ top a-degree term of $P\left(\hat{\beta}_{v, w} ; a, q\right)$;

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \text { where } \underset{L_{+}}{L_{-}}
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Theorem (G.-Lam (2020))

Let $c\left(w v^{-1}\right)=1$.

$$
\#\left(R_{v, w}^{\circ} / T\right)\left(\mathbb{F}_{q}\right)=\text { top a-degree term of } P\left(\hat{\beta}_{v, w} ; a, q\right)
$$

$$
\mathcal{P}\left(R_{v, w}^{\circ} / T ; q, t\right)=\text { top a-degree term of } \mathcal{P}_{\mathrm{KR}}\left(\hat{\beta}_{v, w} ; a, q, t\right) .
$$

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
\left.a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \quad \text { where } X_{L_{+}}\right)
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Theorem (G.-Lam (2020))

$$
\begin{array}{ll}
\text { Let } c\left(w v^{-1}\right)=1 . & \#\left(R_{v, w}^{\circ} / T\right)\left(\mathbb{F}_{q}\right)=\text { top a-degree term of } P\left(\hat{\beta}_{v, w} ; a, q\right) ; \\
& \mathcal{P}\left(R_{v, w}^{\circ} / T ; q, t\right)=\text { top a-degree term of } \mathcal{P}_{\mathrm{KR}}\left(\hat{\beta}_{v, w} ; a, q, t\right) .
\end{array}
$$

For $c\left(w v^{-1}\right) \geqslant 1$, take the T-equivariant cohomology of $R_{v, w}^{\circ}$ with compact support instead.

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
\left.a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \quad \text { where } X_{L_{+}}\right)
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Theorem (G.-Lam (2020))

$$
\begin{array}{ll}
\text { Let } c\left(w v^{-1}\right)=1 . & \#\left(R_{v, w}^{\circ} / T\right)\left(\mathbb{F}_{q}\right)=\text { top a-degree term of } P\left(\hat{\beta}_{v, w} ; a, q\right) ; \\
& \mathcal{P}\left(R_{v, w}^{\circ} / T ; q, t\right)=\text { top a-degree term of } \mathcal{P}_{\mathrm{KR}}\left(\hat{\beta}_{v, w} ; a, q, t\right) .
\end{array}
$$

For $c\left(w v^{-1}\right) \geqslant 1$, take the T-equivariant cohomology of $R_{v, w}^{\circ}$ with compact support instead. G.-Lam (2021+): $q=t=1$ specialization, Dyck paths above a convex shape.

Given a link L, the HOMFLY polynomial $P(L ; a, q)$ is defined by $P(\bigcirc)=1$ and

$$
\left.a P\left(L_{+}\right)-a^{-1} P\left(L_{-}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{0}\right), \text { where } X_{L_{+}}\right)
$$

Khovanov-Rozansky homology yields $\mathcal{P}_{\mathrm{KR}}(L ; a, q, t)$ generalizing $P(L ; a, q)$.

Theorem (G.-Lam (2020))

$$
\begin{array}{ll}
\text { Let } c\left(w v^{-1}\right)=1 . & \#\left(R_{v, w}^{\circ} / T\right)\left(\mathbb{F}_{q}\right)=\text { top a-degree term of } P\left(\hat{\beta}_{v, w} ; a, q\right) ; \\
& \mathcal{P}\left(R_{v, w}^{\circ} / T ; q, t\right)=\text { top a-degree term of } \mathcal{P}_{K R}\left(\hat{\beta}_{v, w} ; a, q, t\right) .
\end{array}
$$

For $c\left(w v^{-1}\right) \geqslant 1$, take the T-equivariant cohomology of $R_{v, w}^{\circ}$ with compact support instead. G.-Lam (2021+): $q=t=1$ specialization, Dyck paths above a convex shape.

Thanks!

