Positroids, knots, and q, t-Catalan numbers

Pavel Galashin (UCLA)

March 26, 2021

Joint work with Thomas Lam (arXiv:2012.09745)

$$Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\}$$

Question

• How many points in $Gr(k, n; \mathbb{F}_q)$?

Question

- How many points in $Gr(k, n; \mathbb{F}_q)$?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

Question

- How many points in $Gr(k, n; \mathbb{F}_q)$?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \cdots [n]_q, \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

Question

- How many points in $Gr(k, n; \mathbb{F}_q)$?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q, \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

• Point count: $\# \operatorname{Gr}(k, n; \mathbb{F}_q) = {n \brack k}_q.$

Question

- How many points in $Gr(k, n; \mathbb{F}_q)$?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q, \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

Point count: # Gr(k, n; 𝔽_q) = [ⁿ_k]_q.
Poincaré polynomial: ∑_i qⁱ dim H²ⁱ(Gr(k, n; ℂ)) = [ⁿ_k]_q.

Question

- How many points in $Gr(k, n; \mathbb{F}_q)$?
- What is the Poincaré polynomial of Gr(k, n; ℂ)?

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]_q! := [1]_q[2]_q \dots [n]_q, \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

- Point count: $\# \operatorname{Gr}(k, n; \mathbb{F}_q) = {n \brack k}_q.$
- Poincaré polynomial: $\sum_{i} q^{i} \dim H^{2i}(Gr(k, n; \mathbb{C})) = {n \brack k}_{q}$.
- Reason: Schubert decomposition.

• Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.

Let A be a hyperplane arrangement in 𝔽ⁿ and A^c := 𝔽ⁿ \ A.
Point count: #A^c(𝔽_q) = χ(A; q);

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_i q^i \dim H^i(\mathcal{A}^c(\mathbb{C})) = (-q)^d \chi(\mathcal{A}; -1/q).$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_i q^i \dim H^i(\mathcal{A}^c(\mathbb{C})) = (-q)^d \chi(\mathcal{A}; -1/q).$
- Reason: ???

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_i q^i \dim H^i(\mathcal{A}^c(\mathbb{C})) = (-q)^d \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_{i} q^{i} \dim H^{i}(\mathcal{A}^{c}(\mathbb{C})) = (-q)^{d} \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^i(Z) = \bigoplus_{p,r\in\mathbb{Z}} H^{i,(p,r)}(Z)$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_{i} q^{i} \dim H^{i}(\mathcal{A}^{c}(\mathbb{C})) = (-q)^{d} \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^{i}(Z) = \bigoplus_{p,r \in \mathbb{Z}} H^{i,(p,r)}(Z)$$

$$H^{2i}(\operatorname{Gr}(k,n)) = H^{2i,(i,i)}(\operatorname{Gr}(k,n))$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_i q^i \dim H^i(\mathcal{A}^c(\mathbb{C})) = (-q)^d \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^{i}(Z) = \bigoplus_{p,r \in \mathbb{Z}} H^{i,(p,r)}(Z)$$

 $H^{2i}(\operatorname{Gr}(k,n)) = H^{2i,(i,i)}(\operatorname{Gr}(k,n)), \qquad H^{i}(\mathcal{A}^{c}) = H^{i,(i,i)}(\mathcal{A}^{c}).$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_i q^i \dim H^i(\mathcal{A}^c(\mathbb{C})) = (-q)^d \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^{i}(Z) = \bigoplus_{p,r \in \mathbb{Z}} H^{i,(p,r)}(Z)$$

 $H^{2i}(\operatorname{Gr}(k,n)) = H^{2i,(i,i)}(\operatorname{Gr}(k,n)), \qquad H^{i}(\mathcal{A}^{c}) = H^{i,(i,i)}(\mathcal{A}^{c}).$

• We will always have $H^{i}(Z) = \bigoplus_{p \in \mathbb{Z}} H^{i,(p,p)}$ ("Hodge–Tate type").

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_{i} q^{i} \dim H^{i}(\mathcal{A}^{c}(\mathbb{C})) = (-q)^{d} \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^{i}(Z) = \bigoplus_{p,r \in \mathbb{Z}} H^{i,(p,r)}(Z)$$

$$H^{2i}(\operatorname{Gr}(k,n)) = H^{2i,(i,i)}(\operatorname{Gr}(k,n)), \qquad H^{i}(\mathcal{A}^{c}) = H^{i,(i,i)}(\mathcal{A}^{c}).$$

- We will always have $H^i(Z) = \bigoplus_{p \in \mathbb{Z}} H^{i,(p,p)}$ ("Hodge–Tate type").
- This gives rise to the bigraded Poincaré polynomial $\mathcal{P}(Z;q,t)\in\mathbb{N}[q,t]$

$$\mathcal{P}(Z;q,t) := \sum_{i,p\in\mathbb{Z}} q^i t^p \dim H^{i,(p,p)}(Z)$$

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{F}^n and $\mathcal{A}^c := \mathbb{F}^n \setminus \mathcal{A}$.
- Point count: $\#\mathcal{A}^{c}(\mathbb{F}_{q}) = \chi(\mathcal{A}; q);$
- Poincaré polynomial: $\sum_{i} q^{i} \dim H^{i}(\mathcal{A}^{c}(\mathbb{C})) = (-q)^{d} \chi(\mathcal{A}; -1/q).$
- Reason: the mixed Hodge structure on $H^{\bullet}(Gr(k, n))$ and $H^{\bullet}(\mathcal{A}^{c})$ is pure.

$$H^{i}(Z) = \bigoplus_{p,r \in \mathbb{Z}} H^{i,(p,r)}(Z)$$

$$H^{2i}(\operatorname{Gr}(k,n)) = H^{2i,(i,i)}(\operatorname{Gr}(k,n)), \qquad H^{i}(\mathcal{A}^{c}) = H^{i,(i,i)}(\mathcal{A}^{c}).$$

- We will always have $H^i(Z) = \bigoplus_{p \in \mathbb{Z}} H^{i,(p,p)}$ ("Hodge–Tate type").
- This gives rise to the bigraded Poincaré polynomial $\mathcal{P}(Z; q, t) \in \mathbb{N}[q^{\frac{1}{2}}, t^{\frac{1}{2}}]$ $\mathcal{P}(Z; q, t) := \sum q^{p-\frac{i}{2}} t^{\frac{d-i}{2}} \dim H^{i,(p,p)}(Z)$, where $d := \dim Z$.

$$\mathcal{P}(Z;q,t):=\sum_{i,p\in\mathbb{Z}}q^{p-rac{i}{2}}t^{rac{d-i}{2}}\operatorname{dim}H^{i,(p,p)}(Z),\quad ext{where }d:=\operatorname{dim}Z$$

 $Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\} = \{k \times n \text{ matrices of rank } k\}/(row operations).$

 $Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\} = \{k \times n \text{ matrices of rank } k\}/(row operations).$ Gr(k, n) is stratified into open positroid varieties. Here's the top-dimensional one:

 $Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\} = \{k \times n \text{ matrices of rank } k\}/(row operations).$ Gr(k, n) is stratified into open positroid varieties. Here's the top-dimensional one:

$$\Pi_{k,n}^{\circ} := \{ X \in \operatorname{Gr}(k,n) \mid \Delta_{1,\ldots,k}(X), \Delta_{2,\ldots,k+1}(X), \ldots, \Delta_{n,1,\ldots,k-1}(X) \neq 0 \},\$$

where $\Delta_I(X)$ =maximal minor of X with column set I.

 $Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\} = \{k \times n \text{ matrices of rank } k\}/(row operations).$ Gr(k, n) is stratified into open positroid varieties. Here's the top-dimensional one:

$$\Pi_{k,n}^{\circ} := \{X \in \mathsf{Gr}(k,n) \mid \Delta_{1,\ldots,k}(X), \Delta_{2,\ldots,k+1}(X), \ldots, \Delta_{n,1,\ldots,k-1}(X) \neq 0\},\$$

where $\Delta_I(X)$ =maximal minor of X with column set I.

Example

$$\Pi_{2,4}^\circ\cong\left\{egin{pmatrix}1&0&a&b\\0&1&c&d\end{pmatrix}ig|a
eq0,d
eq0,ad-bc
eq0
ight\}.$$

 $Gr(k, n; \mathbb{F}) := \{W \subseteq \mathbb{F}^n \mid dim(W) = k\} = \{k \times n \text{ matrices of rank } k\}/(row operations).$ Gr(k, n) is stratified into open positroid varieties. Here's the top-dimensional one:

$$\Pi_{k,n}^{\circ} := \{X \in \mathsf{Gr}(k,n) \mid \Delta_{1,\ldots,k}(X), \Delta_{2,\ldots,k+1}(X), \ldots, \Delta_{n,1,\ldots,k-1}(X) \neq 0\},\$$

where $\Delta_I(X)$ =maximal minor of X with column set I.

Example

$$\mathsf{\Pi}^\circ_{2,4}\cong\left\{egin{pmatrix}1&0&a&b\\0&1&c&d\end{pmatrix}ig|a
eq0,d
eq0,ad-bc
eq0
ight\}.$$

• Point count? Poincaré polynomial? $\mathcal{P}(\prod_{k,n}^{\circ}; q, t)$?

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

• Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} {\binom{2a}{a}}$.

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

- Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} {\binom{2a}{a}}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5} = 7$:

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

- Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} \binom{2a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5} = 7$:

 $\begin{bmatrix} a+b\\a \end{bmatrix}_q := \frac{[a+b]_q!}{[a]_q![b]_q!} = \sum_{\lambda \subseteq a \times b} q^{|\lambda|}.$

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

- Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} \binom{2a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5} = 7$:

Question

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

- Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} \binom{2a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5} = 7$:

Question

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \brack a}_q.$$

$$C_{a,b} := \frac{1}{a+b} \binom{a+b}{a}.$$

- Includes the usual Catalan numbers: $C_{a,a+1} = \frac{1}{a+1} \binom{2a}{a}$.
- Counts the number of Dyck paths inside an $a \times b$ rectangle. E.g. $C_{3,5} = 7$:

 $\begin{bmatrix} a+b\\a \end{bmatrix}_q := \frac{[a+b]_q!}{[a]_q![b]_q!} = \sum_{\lambda \subseteq a \times b} q^{|\lambda|}.$

Question

- Option 1: $C'_{a,b}(q) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\ a \end{bmatrix}_q$.
- Option 2: $C''_{a,b}(q) = \sum_{P \in \mathsf{Dyck}_{a,b}} q^{\mathsf{area}(P)}$.

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \brack a}_q$$
.
• Option 2: $C''_{a,b}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}$.

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \brack a}_q$$
.
• Option 2: $C''_{a,b}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}$.
 $a = 3, b = 5$: $C_{a,b} = 7, \qquad \frac{1}{[a+b]_q} {a+b \brack a}_q = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.

What is "the" q-analog of $C_{a,b}$?

The answers are different!
Question

What is "the" q-analog of $C_{a,b}$?

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \choose a}_q$$
.
• Option 2: $C''_{a,b}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}$.
 $a = 3, b = 5$: $C_{a,b} = 7, \qquad \frac{1}{[a+b]_q} {a+b \choose a}_q = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.
 $\sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)} = q^4 + q^3 + q^2 + q^2 + q^2 + q^1 + q^1 + q^0$

The answers are different!

Theorem (G.–Lam (2020))

Let gcd(k, n) = 1. Then the point count and the Poincaré polynomial of $\Pi_{k,n}^{\circ}$ are

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot C'_{k,n-k}(q), \qquad \mathcal{P}(\Pi_{k,n}^{\circ};q) = (q+1)^{n-1} \cdot C''_{k,n-k}(q^2).$$

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \brack a}_q$$
.
• Option 2: $C''_{a,b}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}$.
 $a = 3, b = 5$: $C_{a,b} = 7, \quad \frac{1}{[a+b]_q} {a+b \brack a}_q = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.
 $\sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)} = q^4 + q^3 + q^2 + q^2 + q^2 + q^1 + q^1 + q^0$

The answers are different!

Theorem (G.-Lam (2020))

Let gcd(k, n) = 1. Then the point count and the Poincaré polynomial of $\prod_{k,n}^{\circ}$ are

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot C_{k,n-k}'(q), \qquad \mathcal{P}(\Pi_{k,n}^{\circ};q) = (q+1)^{n-1} \cdot C_{k,n-k}''(q^2).$$

Corollary: a uniformly random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\Pi_{k,n}^{\circ}(\mathbb{F}_q)$ with probability $\frac{(q-1)^n}{q^n-1}.$

• Option 1:
$$C'_{a,b}(q) = \frac{1}{[a+b]_q} {a+b \brack a}_q$$
.
• Option 2: $C''_{a,b}(q) = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)}$.
 $a = 3, b = 5$: $C_{a,b} = 7, \quad \frac{1}{[a+b]_q} {a+b \brack a}_q = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.
 $\sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)} = q^4 + q^3 + q^2 + q^2 + q^2 + q^1 + q^1 + q^0$

The answers are different!

Theorem (G.-Lam (2020))

Let gcd(k, n) = 1. Then the point count and the Poincaré polynomial of $\prod_{k,n}^{\circ}$ are

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot C_{k,n-k}'(q), \qquad \mathcal{P}(\Pi_{k,n}^{\circ};q) = (q+1)^{n-1} \cdot C_{k,n-k}''(q^2).$$

Corollary: a uniformly random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\Pi_{k,n}^{\circ}(\mathbb{F}_q)$ with probability $\frac{(q-1)^n}{q^n-1}. \qquad \longleftarrow \text{ does not depend on } k?!$ Rational *q*, *t*-Catalan numbers: (introduced by Garsia–Haiman (1996) and Loehr–Warrington (2009))

$$C_{a,b}(q,t) := \sum_{P \in \operatorname{Dyck}_{a,b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)}.$$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009))

$$C_{a,b}(q,t) := \sum_{P \in \operatorname{Dyck}_{a,b}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)}.$$

 $\operatorname{dinv}(P) := \# \left\{ (h, v) \middle| \begin{array}{c} h \text{ is to the left of } v \text{ and} \\ \text{there is a line of slope } a/b \text{ intersecting } h \text{ and } v \end{array} \right\}$

Rational q, t-Catalan numbers: (introduced by Garsia-Haiman (1996) and Loehr-Warrington (2009)) $C_{a,b}(q,t) := \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)} t^{\text{dinv}(P)}.$ $dinv(P) := \# \left\{ (h,v) \middle| \begin{array}{c} h \text{ is to the left of } v \text{ and} \\ \text{there is a line of slope } a/b \text{ intersecting } h \text{ and } v \end{array} \right\}$ $C_{3,5}(q,t) = q^4 t^0 + q^3 t^1 + q^2 t^2 + q^2 t^1 + q^1 t^3 + q^1 t^2 + q^0 t^4$ Rational q, t-Catalan numbers: (introduced by Garsia–Haiman (1996) and Loehr–Warrington (2009))

Theorem (G.–Lam (2020))

$$\mathcal{P}(\prod_{k,n}^{\circ}; q, t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} C_{k,n-k}(q, t).$$

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{\frac{1}{2}} + t^{\frac{1}{2}}\right)^{n-1} C_{k,n-k}(q,t).$$

Let gcd(k, n) = 1. Then the bigraded Poincaré polynomial of $\prod_{k,n}^{\circ}$ is given by

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

• The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T; q, t) = C_{k,n-k}(q, t).$

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

- The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T; q, t) = C_{k,n-k}(q, t).$
- Corollary 1: q, t-symmetry $C_{a,b}(q, t) = C_{a,b}(t, q)$.

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

- The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T;q,t) = C_{k,n-k}(q,t).$
- Corollary 1: q, t-symmetry $C_{a,b}(q, t) = C_{a,b}(t, q)$.
- Corollary 2: the coefficients at $q^d, q^{d-1}t, \ldots, t^d$ form a unimodal sequence $\forall d$.

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

- The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T;q,t) = C_{k,n-k}(q,t).$
- Corollary 1: q, t-symmetry $C_{a,b}(q, t) = C_{a,b}(t, q)$.
- Corollary 2: the coefficients at $q^d, q^{d-1}t, \ldots, t^d$ form a unimodal sequence $\forall d$.
- Catalan case b = a + 1: both properties follow from Haiman '94, '02.

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

- The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T; q, t) = C_{k,n-k}(q, t).$
- Corollary 1: q, t-symmetry $C_{a,b}(q, t) = C_{a,b}(t, q)$.
- Corollary 2: the coefficients at $q^d, q^{d-1}t, \ldots, t^d$ form a unimodal sequence $\forall d$.
- Catalan case b = a + 1: both properties follow from Haiman '94, '02.
- Arbitrary *a*, *b*: symmetry follows from Mellit '16, unimodality appears new.

Let gcd(k, n) = 1. Then the bigraded Poincaré polynomial of $\prod_{k,n}^{\circ}$ is given by

$$\mathcal{P}(\Pi_{k,n}^{\circ};q,t) = \left(q^{rac{1}{2}} + t^{rac{1}{2}}
ight)^{n-1} C_{k,n-k}(q,t).$$

- The subgroup $T \subseteq SL_n(\mathbb{C})$ of diagonal $n \times n$ matrices acts freely on $\Pi_{k,n}^{\circ}$ and $\mathcal{P}(\Pi_{k,n}^{\circ}/T; q, t) = C_{k,n-k}(q, t).$
- Corollary 1: q, t-symmetry $C_{a,b}(q, t) = C_{a,b}(t, q)$.
- Corollary 2: the coefficients at $q^d, q^{d-1}t, \ldots, t^d$ form a unimodal sequence $\forall d$.
- Catalan case b = a + 1: both properties follow from Haiman '94, '02.
- Arbitrary *a*, *b*: symmetry follows from Mellit '16, unimodality appears new.

[LS16] Thomas Lam and David E. Speyer. Cohomology of cluster varieties. I. Locally acyclic case. arXiv:1604.06843.
[Sco06] J. S. Scott. Grassmannians and cluster algebras. *Proc. Lond. Math. Soc. (3)*, 92(2):345–380, 2006.
[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501.

• Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.

Let G = SL_n(ℂ), B, B_− are subgroups of upper and lower triangular matrices.
G/B =flag variety.

- Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.
- G/B = flag variety.
- Open Richardson varieties: for $v \leq w \in S_n$, $R_{v,w}^{\circ} := (BwB \cap B_-vB)/B$.

- Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.
- G/B = flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_n$, $R_{v,w}^\circ := (BwB \cap B_-vB)/B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1) < \cdots < w(k)$ and $w(k+1) < \cdots < w(n)$.

- Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.
- G/B = flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_n$, $R_{v,w}^\circ := (BwB \cap B_-vB)/B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1) < \cdots < w(k)$ and $w(k+1) < \cdots < w(n)$.
- $\prod_{k,n}^{\circ} \cong R_{\mathrm{id},w}^{\circ}$, where $w(i) \equiv i + n k$ modulo n for all $i = 1, 2, \ldots, n$.

- Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.
- G/B = flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_n$, $R_{v,w}^\circ := (BwB \cap B_-vB)/B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1) < \cdots < w(k)$ and $w(k+1) < \cdots < w(n)$.
- $\Pi_{k,n}^{\circ} \cong R_{\mathrm{id},w}^{\circ}$, where $w(i) \equiv i + n k$ modulo n for all $i = 1, 2, \ldots, n$.
- *T*-action on $R_{v,w}^{\circ}$ is free iff $c(wv^{-1}) = 1$, where *c* denotes the number of cycles.

- Let $G = SL_n(\mathbb{C})$, B, B_- are subgroups of upper and lower triangular matrices.
- G/B = flag variety.
- Open Richardson varieties: for $v \leqslant w \in S_n$, $R_{v,w}^\circ := (BwB \cap B_-vB)/B$.
- This recovers open positroid varieties when w is Grassmannian, i.e., $w(1) < \cdots < w(k)$ and $w(k+1) < \cdots < w(n)$.
- $\Pi_{k,n}^{\circ} \cong R_{\mathrm{id},w}^{\circ}$, where $w(i) \equiv i + n k$ modulo n for all $i = 1, 2, \ldots, n$.
- *T*-action on $R_{v,w}^{\circ}$ is free iff $c(wv^{-1}) = 1$, where *c* denotes the number of cycles.

If $c(wv^{-1}) = 1$ then

$$\mathcal{P}(R_{v,w}^{\circ}/T;q,t) = ???$$

• Given $u \in S_n$, choose a reduced word $u = s_{i_1} s_{i_2} \cdots s_{i_\ell}$.

- Given $u \in S_n$, choose a reduced word $u = s_{i_1} s_{i_2} \cdots s_{i_\ell}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$

- Given $u \in S_n$, choose a reduced word $u = s_{i_1} s_{i_2} \cdots s_{i_\ell}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leq w$, set $\beta_{v,w} := \beta(w) \cdot \beta(v)^{-1}$.

- Given $u \in S_n$, choose a reduced word $u = s_{i_1} s_{i_2} \cdots s_{i_\ell}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leq w$, set $\beta_{v,w} := \beta(w) \cdot \beta(v)^{-1}$.
- The rainbow closure $\hat{\beta}_{v,w}$ is called the Richardson link associated to $R_{v,w}^{\circ}$.

Richardson link $\hat{\beta}_{v,w}$

- Given $u \in S_n$, choose a reduced word $u = s_{i_1}s_{i_2}\cdots s_{i_\ell}$.
- Make each crossing into a positive braid crossing, get braid $\beta(u)$
- For $v \leq w$, set $\beta_{v,w} := \beta(w) \cdot \beta(v)^{-1}$.
- The rainbow closure $\hat{\beta}_{v,w}$ is called the Richardson link associated to $R_{v,w}^{\circ}$.
- When $c(wv^{-1}) = 1$, $\hat{\beta}_{v,w}$ is a knot, i.e., has a unique connected component.

Richardson knot $\hat{\beta}_{v,w}$

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and
 $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where \bigvee_{L_+} \bigvee_{L_-} \bigvee_{L_0} \bigvee_{L_0}

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigvee_{L_0} \bigvee_{$

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and
 $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where \bigvee_{L_+} \bigvee_{L_-} \bigvee_{L_0}

Theorem (G.–Lam (2020))
Let
$$c(wv^{-1}) = 1$$
. $\#(R_{v,w}^{\circ}/T)(\mathbb{F}_q) = top \ a$ -degree term of $P(\hat{\beta}_{v,w}; a, q);$

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and
 $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where \bigvee_{L_+} \bigvee_{L_-} \bigvee_{L_0}

Theorem (G.-Lam (2020))
Let
$$c(wv^{-1}) = 1$$
. $\#(R_{v,w}^{\circ}/T)(\mathbb{F}_q) = top \ a\text{-degree term of } P(\hat{\beta}_{v,w}; a, q);$
 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a\text{-degree term of } \mathcal{P}_{\mathsf{KR}}(\hat{\beta}_{v,w}; a, q, t).$

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigvee_{L_0} \bigvee_{$

Theorem (G.-Lam (2020))
Let
$$c(wv^{-1}) = 1$$
. $\#(R_{v,w}^{\circ}/T)(\mathbb{F}_q) = top \ a\text{-degree term of } P(\hat{\beta}_{v,w}; a, q);$
 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a\text{-degree term of } \mathcal{P}_{\mathsf{KR}}(\hat{\beta}_{v,w}; a, q, t).$

For $c(wv^{-1}) \ge 1$, take the *T*-equivariant cohomology of $R_{v,w}^{\circ}$ with compact support instead.

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where $\bigotimes_{L_+} \bigotimes_{L_-} \bigotimes_{L_0} \bigvee_{L_0} \bigvee_{$

Theorem (G.–Lam (2020))
Let
$$c(wv^{-1}) = 1$$
. $\#(R_{v,w}^{\circ}/T)(\mathbb{F}_q) = top \ a\text{-degree term of } P(\hat{\beta}_{v,w}; a, q);$
 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a\text{-degree term of } \mathcal{P}_{\mathsf{KR}}(\hat{\beta}_{v,w}; a, q, t).$

For $c(wv^{-1}) \ge 1$, take the *T*-equivariant cohomology of $R_{v,w}^{\circ}$ with compact support instead. G.-Lam (2021+): q = t = 1 specialization, Dyck paths above a convex shape.

Given a link *L*, the HOMFLY polynomial
$$P(L; a, q)$$
 is defined by $P(\bigcirc) = 1$ and
 $aP(L_+) - a^{-1}P(L_-) = \left(q^{\frac{1}{2}} - q^{-\frac{1}{2}}\right)P(L_0)$, where \bigvee_{L_+} \bigvee_{L_-} \bigvee_{L_0}

Theorem (G.–Lam (2020))
Let
$$c(wv^{-1}) = 1$$
. $\#(R_{v,w}^{\circ}/T)(\mathbb{F}_q) = top \ a\text{-degree term of } P(\hat{\beta}_{v,w}; a, q);$
 $\mathcal{P}(R_{v,w}^{\circ}/T; q, t) = top \ a\text{-degree term of } \mathcal{P}_{\mathsf{KR}}(\hat{\beta}_{v,w}; a, q, t).$

For $c(wv^{-1}) \ge 1$, take the *T*-equivariant cohomology of $R_{v,w}^{\circ}$ with compact support instead. G.-Lam (2021+): q = t = 1 specialization, Dyck paths above a convex shape.

Thanks!