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Schubert varieties I: overview

General goal: Understand global and local properties of Schubert
varieties.

Singularities and finer measures such as Hilbert-Samuel
multiplicity ⇒ commutative algebra

Kazhdan-Lusztig polynomials ⇒ Hecke algebras

We are interested in combinatorial descriptions of the
number/classification.

Alexander Yong University of Illinois at Urbana-Champaign
Coxeter-like elements, Schubert geometry, and multiplicity-freeness in algebraic combinatorics



Schubert varieties II: overview (continued)

The problem set about Schuberts that we study has no finite
algorithm, a priori.

Let X = Flags(Cn). GLn and upper triangulars B ⊂ GLn act on X .

Definition: Schubert varieties = B-orbit closures Xw , w ∈ Sn.

dim(Xw ) = `(w) = {1 ≤ i < j ≤ n : w(i) > w(j)}

Xw is a union of B-orbits and hence has a B-action.

Xw has a “secret” group action of a “Levi” depending on w .
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Schubert varieties III: the main problem

Left descents: J(w) = {1 ≤ i ≤ n : i + 1 appears left of i in w }

Example: w = 31524 ⇒ J(w) = {2, 4}.

Let I ⊆ J(w); this gives the subdivision

D := [n] − I = {d1 < d2 < . . . < dk }.

Declare d0 := 0, dk+1 = n.

Definition: The Levi-subgroup of GLn for I is the block submatrix

LI ∼= GLd1−d0 × GLd2−d1 × · · · × GLdk+1−dk .

Fact: LI acts on Xw .

Main definition: If I ⊆ J(w), Xw is I -spherical if Xw has a dense
orbit of a Borel in LI .

Main problem: Which Xw are I -spherical?
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Probabilistic combinatorics

Definition: w ∈ Sn is proper if `(w) ≤ n +
(
#J(w)+1

2

)
.

Actually, for 1 ≤ n ≤ 10, proper permutations are not rare:

1, 2, 6, 24, 120, 684, 4348, 30549, 236394, 2006492, . . .

Theorem: (Brewster-Hodges-Y. ’20)

Pr[w is proper] → 0 as n → ∞.

Thus

lim
n→∞Pr[w ∈ Sn,Xw is LI -spherical for some I ⊂ J(w)] → 0.

Proof idea: w not proper means dim(Xw ) is too large for a Borel
orbit to be dense. Now use the second moment method.
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Split-symmetry in algebraic combinatorics

A paradigm in algebraic combinatorics:

Symmetric polynomials ↪→ Polynomials

Schur Schubert, Grothendieck,....

Ex. f =
∏

i (x − ri ) =
∏n

i=2(x1 + xi ) is “split symmetric”.

Definition: (Hodges-Yong, ’20) ΠD = ring of polynomials
symmetric in Xi := {xdi−1+1, . . . , xdi } for 1 ≤ i ≤ k + 1.

A polynomial is D-split-symmetric if f ∈ ΠD .

Let Parn = partitions with at most n parts. Basis of ΠD is:

sλ1,...,λk := sλ1(X1) · · · sλk (Xk)

for (λ1, . . . , λk) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk .

Ex. (Vieta’s formulas, a reinterpretation)

f = s(n−1)(x1)s∅(x2, . . . , xn) + s(n−2)(x1)s(1)(x2, . . . , xn)+

· · ·+ s∅(x1)s(1n−1)(x2, . . . , xn).
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Split multiplicity-freeness

Vieta’s formula only uses coefficients 1. It is “multiplicity-free”.

Definition: (Hodges-Yong, ’20)

f =
∑

(λ1,...,λk )∈ParD

cλ1,...,λk sλ1,...,λk ∈ ΠD

is D-multiplicity-free if cλ1,...,λk ∈ {0, 1} for all (λ1, . . . , λk) ∈ ParD .

D = ∅: mult.-freeness of symmetric functions into Schurs
(e.g., Stembridge ’01, . . ., S. Gao-Hodges-Orelowitz ’20).

D = [n − 1]: mult.-freeness of monomial expansion (e.g.,
Fink-Mészáros-St. Dizier ’19 for Schubert, Hodges-Y. ’20 for
key polynomials)
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Key polynomials (a.k.a. Demazure characters)

The Demazure operator is

πj : Poln → Poln

f 7→ xj f − xj+1sj f

xj − xj+1
,

where sj f := f (x1, . . . , xj+1, xj , . . . , xn).

A weak composition is α = (α1, . . . , αn) ∈ Zn
≥0.

Def: (Lascoux-Schützenberger, ’89) The key polynomial κα is

xα := xα1
1 · · · x

αn
n , if α is weakly decreasing.

Otherwise,

κα = πj(κα̂) where α̂ = (α1, . . . , αj+1, αj , . . . , αn) and αj+1 > αj .
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Key polynomials II

Example: α = (0, 2, 0, 1)

κα = x22x4+x22x3+x1x2x4+x21x4+x1x3x2+x21x2+x21x3+x1x3x2+x1x
2
2

is symmetric in X1 = {x1, x2},X2 = {x3, x4}, and

κα = s (x1, x2)s (x3, x4) + s (x1, x2)s∅(x3, x4)

is {2}-mult.-free.

For λ ∈ Parn and w ∈ Sn let

wλ := (λw−1(1), . . . , λw−1(n)).

Theorem: (Hodges-Y. ’20) Let w ∈ Sn, I ⊆ J(w). Then Xw is
LI -spherical ⇐⇒ κwλ is D-mult.-free for all λ ∈ Parn.

Conjecture: (Hodges-Y. ’20) Sphericality holds if κwρn is
D-multiplicity-free, where ρ = (n, n − 1, . . . , 3, 2, 1).
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Coxeter(-like) elements and reduced words

Let WP be a parabolic subgroup of W (= Sn).

Definition: A standard Coxeter element c ∈WP is any distinct
product of all generators of WP .

Definition: (Gao-Hodges-Y, ’21+) Let w ∈W and fix I ⊂ J(w).
Then w is I -spherical if w0(I )w is a standard Coxeter element in
some WP .

Let Red(w) be the set of reduced words for w .

In [Hodges-Yong, ’20], a different def. of I -spherical was given.

Definition: Let w ∈ Sn and I ⊂ J(w). w is I -spherical if
R = si1si2 · · · si`(w)

∈ Red(w) exists such that

(S.1’) sdi appears at most once in R

(S.2’) #{m : dt−1 < im < dt } <
(dt−dt−1+1

2

)
for 1 ≤ t ≤ k + 1.
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In [Hodges-Yong, ’20], a different def. of I -spherical was given.

Definition: Let w ∈ Sn and I ⊂ J(w). w is I -spherical if
R = si1si2 · · · si`(w)

∈ Red(w) exists such that

(S.1’) sdi appears at most once in R

(S.2’) #{m : dt−1 < im < dt } <
(dt−dt−1+1

2

)
for 1 ≤ t ≤ k + 1.
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Coxeter(-like) elements and reduced words II

Theorem: (Gao-Hodges-Y., ’21+) The two definitions of
I -spherical agree for W = Sn.

We are working towards:

Conjecture: (Hodges-Y., ’20, Gao-Hodges-Y., ’21)
Let w ∈ Sn and I ⊂ J(w). Xw is LI -spherical if and only if w is
I -spherical.

Report: We (Gao-Hodges-Y.) have a sketch proof and are
checking details....

These ideas have some extensions to other finite types; see
[Hodges-Y., ’20] for discussion, including evidence using work of

Avdeedv-Petukhov ’14

Can-Hodges ’18

Hodges-Lakshmibai ’18

Karuppuchamy ’13

Magyar-Weyman-Zelevinsky ’99, ...
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Some data; pattern avoidance

Data: All w ∈ Sn are J(w)-spherical, if n ≤ 4. In S5 the
non-examples are

24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531,

45123, 45213, 45231, 45312, 52314, 52341, 53124, 53142,

53412, 53421, 54123, 54213, 54231.

Example: w = 24531 ⇒ J(w) = {1, 3} and
w0(J(w))w = s1 · s3 · 24531 = 13542 = s2s4s3s2 (not Coxeter);

Definition: v ∈ SN avoids u ∈ Sn if there does not exist
φ1 < φ2 < . . . < φn such that v(φ1), . . . , v(φn) are in the same
relative order as u(1), . . . , u(n).

Conjecture: (Hodges-Y., ’20) Xw is J(w)-spherical if and only if
w pattern avoids all of the permutations listed above.
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Conclusions and summary

In this talk, we discussed when a Schubert variety is spherical.

Spherical variety theory generalizes that of toric varieties (see
papers of, e.g., Brion-Luna-Vust ’86, Luna ’01, Perrin ’14).

We offer such (conjectural) classifications. Our work makes
introduces problems/relations to:

Probabilistic combinatorics

Combinatorics of polynomials

Coxeter combinatorics

Pattern avoidance

Thank you!
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