A combinatorial Chevalley formula for semi-infinite flag manifolds and its applications

Cristian Lenart

State University of New York at Albany

Workshop "Geometry and Combinatorics from Root Systems" ICERM, March 2021

Joint work with Satoshi Naito (Tokyo Institute of Technology) and Daisuke Sagaki (Tsukuba University). arXiv:2010.06143, forthcoming paper

Cristian Lenart was partially supported by the NSF grant DMS-1855592.

Notation

G semisimple Lie group over \mathbb{C} .

 $T \subset B \subset G$, T maximal torus, B Borel subgroup.

N unipotent radical, B = TN.

P weight lattice, ω_i fundamental weights ($i \in I$), P^+ dominant weights.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$.

$$\mathbb{Z}[P] = R(T) = \bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}.$$

W finite Weyl group, s_i simple reflections, w_o longest element.

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v} \right], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \,.$$

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v} \right], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \,.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v}
ight], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \, .$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v}
ight], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \, .$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

► a Chevalley formula for K_T(Q_G), with Q_G the semi-infinite flag manifold corresponding to G;

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v}
ight], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \, .$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

► a Chevalley formula for K_T(Q_G), with Q_G the semi-infinite flag manifold corresponding to G;

• Chevalley formulas for $QK_T(G/B)$ and $QK_T(G/P)$;

Chevalley formula for $K_T(G/B)$ (as module over $K_T(\text{pt}) = \mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v}
ight], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z} \, .$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

- ► a Chevalley formula for K_T(Q_G), with Q_G the semi-infinite flag manifold corresponding to G;
- Chevalley formulas for $QK_T(G/B)$ and $QK_T(G/P)$;
- applications: more explicit computations and results in type A.

 $\mathbf{Q}_G^{\mathrm{rat}}$ is the reduced ind-scheme associated to

$G(\mathbb{C}((z)))/(T \cdot N(\mathbb{C}((z)))).$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

 $\mathbf{Q}_G^{\mathrm{rat}}$ is the reduced ind-scheme associated to

 $G(\mathbb{C}(\!(z)\!))/(T\cdot N(\mathbb{C}(\!(z)\!))).$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_G(x)$, for $x \in W_{\text{aff}} = W \ltimes Q^{\vee}$.

 $\mathbf{Q}_G^{\mathrm{rat}}$ is the reduced ind-scheme associated to

 $G(\mathbb{C}(\!(z)\!))/(T\cdot N(\mathbb{C}(\!(z)\!))).$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_G(x)$, for $x \in W_{\text{aff}} = W \ltimes Q^{\vee}$.

We concentrate on $\mathbf{Q}_G := \mathbf{Q}_G(e)$ with $\mathcal{T} \times \mathbb{C}^*$ action, where \mathbb{C}^* acts by loop rotation.

 $\mathbf{Q}_{G}^{\mathrm{rat}}$ is the reduced ind-scheme associated to

 $G(\mathbb{C}(\!(z)\!))/(T \cdot N(\mathbb{C}(\!(z)\!))).$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_G(x)$, for $x \in W_{\text{aff}} = W \ltimes Q^{\vee}$.

We concentrate on $\mathbf{Q}_G := \mathbf{Q}_G(e)$ with $T \times \mathbb{C}^*$ action, where \mathbb{C}^* acts by loop rotation.

 $\mathcal{K}_{T \times \mathbb{C}^*}(\mathbf{Q}_G)$ has a $\mathbb{Z}[q, q^{-1}][P]$ -basis of classes $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ of the structure sheaves of $\mathbf{Q}_G(x)$, for $x \in W_{\text{aff}}^{\geq 0} = W \ltimes Q^{\vee,+}$.

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

Previous work:

► [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P⁺, in terms of quantum Lakshmibai-Seshadri (LS) paths;

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

Previous work:

- ► [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P⁺, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- ► [Naito-Orr-Sagaki] Chevalley formula (finite) for λ ∈ P⁻, in terms of quantum LS paths.

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

Previous work:

- ► [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P⁺, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- ► [Naito-Orr-Sagaki] Chevalley formula (finite) for λ ∈ P⁻, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [Ishii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

Previous work:

- ► [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P⁺, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- ► [Naito-Orr-Sagaki] Chevalley formula (finite) for λ ∈ P⁻, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [Ishii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].

[L.-Naito-Sagaki]:

► translate the Chevalley formulas for \u03c0 ∈ P⁺ and \u03c0 ∈ P⁻ from quantum LS paths to the quantum alcove model (below);

It expresses the tensor product of $[\mathcal{O}_{\mathbf{Q}_G(x)}]$ with the class of a line bundle $[\mathcal{O}_{\mathbf{Q}_G}(\lambda)]$, for $\lambda \in P$.

Previous work:

- ► [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P⁺, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- ► [Naito-Orr-Sagaki] Chevalley formula (finite) for λ ∈ P⁻, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [Ishii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].

[L.-Naito-Sagaki]:

- ► translate the Chevalley formulas for \u03c0 ∈ P⁺ and \u03c0 ∈ P⁻ from quantum LS paths to the quantum alcove model (below);
- ▶ generalize the new formulas to arbitrary \u03c0 ∈ P, via combinatorics of the quantum alcove model.

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted QBG(W), is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, where

 $\ell(\mathit{ws}_{\alpha}) = \ell(\mathit{w}) + 1$ (covers of Bruhat order), or $\ell(\mathit{ws}_{\alpha}) = \ell(\mathit{w}) - 2ht(\alpha^{\vee}) + 1.$

(If $\alpha^{\vee} = \sum_{i} c_{i} \alpha_{i}^{\vee}$, then $\operatorname{ht}(\alpha^{\vee}) := \sum_{i} c_{i}$.)

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted QBG(W), is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, where

$$\ell(ws_{\alpha}) = \ell(w) + 1$$
 (covers of Bruhat order), or
 $\ell(ws_{\alpha}) = \ell(w) - 2ht(\alpha^{\vee}) + 1.$

(If
$$\alpha^{\vee} = \sum_{i} c_{i} \alpha_{i}^{\vee}$$
, then $\operatorname{ht}(\alpha^{\vee}) := \sum_{i} c_{i}$.)

It originates in the Chevalley formula for the quantum cohomology of flag varieties [Fulton-Woodward].

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted QBG(W), is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, where

$$\ell(ws_{\alpha}) = \ell(w) + 1$$
 (covers of Bruhat order), or
 $\ell(ws_{\alpha}) = \ell(w) - 2ht(\alpha^{\vee}) + 1.$

(If
$$\alpha^{\vee} = \sum_{i} c_{i} \alpha_{i}^{\vee}$$
, then $\operatorname{ht}(\alpha^{\vee}) := \sum_{i} c_{i}$.)

It originates in the Chevalley formula for the quantum cohomology of flag varieties [Fulton-Woodward].

It has a natural lift to the (covers of the) Bruhat order on the affine Weyl group $W_{\rm aff}$ [Lam-Shimozono].

Hasse diagram of the Bruhat order for S_3 :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantum Bruhat graph for S_3 :

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Given a weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given a weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\overline{} = (\beta_1, \ldots, \beta_m).$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ} - \lambda$ (where A_{\circ} is the fundamental alcove).

Given a weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ} - \lambda$ (where A_{\circ} is the fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A_{\circ} to $A_{\circ} - \lambda$.

Example. Type A_2 , $\lambda = (3, 1, 0) = 3\varepsilon_1 + \varepsilon_2$, $\Gamma = ((1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = end(w, A).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = end(w, A).$$

The main structure structure: w-admissible subsets

$$\mathcal{A}(w,\Gamma) := \{A : \pi(w,A) \text{ path in QBG}(W)\}.$$

We associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

We associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt
$$(w, A) := -w \widehat{r}_{j_1} \dots \widehat{r}_{j_s}(-\lambda)$$
;

We associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt(
$$w, A$$
) := $-w \widehat{r}_{j_1} \dots \widehat{r}_{j_s}(-\lambda)$;

•
$$A^- := \{j_i \in A : wr_{j_1} \dots r_{j_{i-1}} > wr_{j_1} \dots r_{j_{i-1}}r_{j_i}\};$$

We associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt(
$$w, A$$
) := $-w \widehat{r}_{j_1} \dots \widehat{r}_{j_s}(-\lambda)$;

•
$$A^- := \{j_i \in A : wr_{j_1} \dots r_{j_{i-1}} > wr_{j_1} \dots r_{j_{i-1}}r_{j_i}\};$$

• down
$$(w, A) := \sum_{j \in A^-} |\beta_j|^{\vee} \in Q^{\vee, +}$$
;

We associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt(
$$w, A$$
) := $-w \widehat{r}_{j_1} \dots \widehat{r}_{j_s}(-\lambda)$;

•
$$A^- := \{j_i \in A : wr_{j_1} \dots r_{j_{i-1}} > wr_{j_1} \dots r_{j_{i-1}}r_{j_i}\};$$

• down
$$(w, A) := \sum_{j \in A^-} |\beta_j|^{\vee} \in Q^{\vee, +}$$
;

• height(w, A) :=
$$\sum_{j \in A^-} \operatorname{sgn}(\beta_j) \widetilde{l_j}$$
, for $\widetilde{l_i} := \langle \lambda, \beta_i^{\vee} \rangle - l_i$.

The Chevalley formula for \mathbf{Q}_G Let $\lambda = \sum_{i \in I} \lambda_i \omega_i$ be an arbitrary weight $(\lambda_i \in \mathbb{Z})$.

Let $\lambda = \sum_{i \in I} \lambda_i \omega_i$ be an arbitrary weight $(\lambda_i \in \mathbb{Z})$. Let $\Gamma(\lambda) = (\beta_1, \ldots, \beta_m)$ be an arbitrary λ -chain.

Let $\lambda = \sum_{i \in I} \lambda_i \omega_i$ be an arbitrary weight $(\lambda_i \in \mathbb{Z})$. Let $\Gamma(\lambda) = (\beta_1, \ldots, \beta_m)$ be an arbitrary λ -chain. Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of *I*-tuples of partitions $\chi = (\chi^{(i)})_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max(\lambda_i, 0)$.

Let $\lambda = \sum_{i \in I} \lambda_i \omega_i$ be an arbitrary weight $(\lambda_i \in \mathbb{Z})$. Let $\Gamma(\lambda) = (\beta_1, \ldots, \beta_m)$ be an arbitrary λ -chain. Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of *I*-tuples of partitions $\chi = (\chi^{(i)})_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max(\lambda_i, 0)$. Set $|\chi| := \sum_{i \in I} |\chi^{(i)}|, \ \iota(\chi) := \sum_{i \in I} \chi_1^{(i)} \alpha_i^{\vee} \in Q^{\vee, +}$.

Let
$$\lambda = \sum_{i \in I} \lambda_i \omega_i$$
 be an arbitrary weight $(\lambda_i \in \mathbb{Z})$.
Let $\Gamma(\lambda) = (\beta_1, \ldots, \beta_m)$ be an arbitrary λ -chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of *I*-tuples of partitions $\chi = (\chi^{(i)})_{i \in I}$
such that $\chi^{(i)}$ is a partition of length at most $\max(\lambda_i, 0)$.
Set $|\chi| := \sum_{i \in I} |\chi^{(i)}|, \ \iota(\chi) := \sum_{i \in I} \chi_1^{(i)} \alpha_i^{\vee} \in Q^{\vee, +}$.
Theorem. [L.-Naito-Sagaki] Let $x = wt_{\xi} \in W_{\operatorname{aff}}^{\geq 0}$. Then, in
 $K_{T \times \mathbb{C}^*}(\mathbf{Q}_G)$, we have

Let
$$\lambda = \sum_{i \in I} \lambda_i \omega_i$$
 be an arbitrary weight $(\lambda_i \in \mathbb{Z})$.
Let $\Gamma(\lambda) = (\beta_1, \dots, \beta_m)$ be an arbitrary λ -chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of *I*-tuples of partitions $\chi = (\chi^{(i)})_{i \in I}$
such that $\chi^{(i)}$ is a partition of length at most $\max(\lambda_i, 0)$.
Set $|\chi| := \sum_{i \in I} |\chi^{(i)}|, \ \iota(\chi) := \sum_{i \in I} \chi_1^{(i)} \alpha_i^{\vee} \in Q^{\vee, +}$.
Theorem. [L.-Naito-Sagaki] Let $x = wt_{\xi} \in W_{\operatorname{aff}}^{\geq 0}$. Then, in
 $\mathcal{K}_{T \times \mathbb{C}^*}(\mathbf{Q}_G)$, we have
 $[\mathcal{O}_{\mathbf{Q}_G}(-w_\circ \lambda)] \cdot [\mathcal{O}_{\mathbf{Q}_G(\chi)}] =$

$$\sum_{A \in \mathcal{A}(w, \Gamma(\lambda))} \sum_{\boldsymbol{\chi} \in \overline{\operatorname{Par}(\lambda)}} (-1)^{n(A)} q^{-\operatorname{height}(w, A) - \langle \lambda, \xi \rangle - |\boldsymbol{\chi}|} \mathbf{e}^{\operatorname{wt}(w, A)} \cdot \\ \cdot \left[\mathcal{O}_{\mathbf{Q}_{G}(\operatorname{end}(w, A) t_{\xi + \operatorname{down}(w, A) + \iota(\boldsymbol{\chi})})} \right],$$

Let
$$\lambda = \sum_{i \in I} \lambda_i \omega_i$$
 be an arbitrary weight $(\lambda_i \in \mathbb{Z})$.
Let $\Gamma(\lambda) = (\beta_1, \dots, \beta_m)$ be an arbitrary λ -chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of *I*-tuples of partitions $\chi = (\chi^{(i)})_{i \in I}$
such that $\chi^{(i)}$ is a partition of length at most $\max(\lambda_i, 0)$.
Set $|\chi| := \sum_{i \in I} |\chi^{(i)}|, \ \iota(\chi) := \sum_{i \in I} \chi_1^{(i)} \alpha_i^{\vee} \in Q^{\vee, +}$.
Theorem. [L.-Naito-Sagaki] Let $x = wt_{\xi} \in W_{\operatorname{aff}}^{\geq 0}$. Then, in
 $\mathcal{K}_{T \times \mathbb{C}^*}(\mathbf{Q}_G)$, we have
 $[\mathcal{O}_{\mathbf{Q}_G}(-w_\circ\lambda)] \cdot [\mathcal{O}_{\mathbf{Q}_G(\chi)}] =$

$$\sum_{A \in \mathcal{A}(w, \Gamma(\lambda))} \sum_{\chi \in \overline{\operatorname{Par}(\lambda)}} (-1) \forall q \quad \forall t \in \mathcal{A}(w, \Gamma(\lambda))$$
$$\cdot \left[\mathcal{O}_{\mathbf{Q}_{G}(\operatorname{end}(w, A) t_{\xi + \operatorname{down}(w, A) + \iota(\chi)})} \right],$$

where n(A), for $A = \{j_1 < \cdots < j_s\}$, is the number of negative roots in $\{\beta_{i_1},\ldots,\beta_{i_s}\}$.

QK(X) defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

QK(X) defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

QK(X) defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

QK(X) defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $QK_T(G/B)$ has a $\mathbb{Z}[Q][P]$ -basis given by the classes $[\mathcal{O}^w]$ of the structure sheaves of (opposite) Schubert varieties in G/B, for $w \in W$.

QK(X) defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $QK_T(G/B)$ has a $\mathbb{Z}[Q][P]$ -basis given by the classes $[\mathcal{O}^w]$ of the structure sheaves of (opposite) Schubert varieties in G/B, for $w \in W$.

Given
$$\xi = d_1 \alpha_1^{\vee} + \cdots + d_r \alpha_r^{\vee}$$
 in $Q^{\vee,+}$, let $Q^{\xi} := Q_1^{d_1} \cdots Q_r^{d_r}$.

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

$$egin{aligned} &[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w] = (1 - \mathbf{e}^{w(\omega_k) - \omega_k}) \, [\mathcal{O}^w] + \ &\sum_{A \in \mathcal{A}(w, \Gamma(-\omega_k)) \setminus \{\emptyset\}} (-1)^{|A| - 1} \, Q^{\operatorname{down}(w, A)} \, \mathbf{e}^{-\omega_k - \operatorname{wt}(w, A)} \, [\mathcal{O}^{\operatorname{end}(w, A)}] \,. \end{aligned}$$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

$$\begin{split} [\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w] &= (1 - \mathbf{e}^{w(\omega_k) - \omega_k}) \left[\mathcal{O}^w \right] + \\ &\sum_{A \in \mathcal{A}(w, \Gamma(-\omega_k)) \setminus \{\emptyset\}} (-1)^{|A| - 1} \, Q^{\operatorname{down}(w, A)} \, \mathbf{e}^{-\omega_k - \operatorname{wt}(w, A)} \left[\mathcal{O}^{\operatorname{end}(w, A)} \right]. \end{split}$$

Proof: Translate the (anti-dominant) Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism; cf. Peterson's isomorphism and its extension to *K*-theory [Peterson, Lam-Shimozono, Lam-Li-Mihalcea-Shimozono, Ikeda-Iwao-Maeno].

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

$$\begin{split} [\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w] &= (1 - \mathbf{e}^{w(\omega_k) - \omega_k}) \left[\mathcal{O}^w \right] + \\ &\sum_{A \in \mathcal{A}(w, \Gamma(-\omega_k)) \setminus \{\emptyset\}} (-1)^{|A| - 1} \, Q^{\operatorname{down}(w, A)} \, \mathbf{e}^{-\omega_k - \operatorname{wt}(w, A)} \left[\mathcal{O}^{\operatorname{end}(w, A)} \right]. \end{split}$$

Proof: Translate the (anti-dominant) Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism; cf. Peterson's isomorphism and its extension to *K*-theory [Peterson, Lam-Shimozono, Lam-Li-Mihalcea-Shimozono, Ikeda-Iwao-Maeno].

Theorem. [Kato] There is a $\mathbb{Z}[P]$ -module isomorphism respecting products

$$QK_T(G/B) \xrightarrow{\simeq} K'_T(\mathbf{Q}_G) \subset K_T(\mathbf{Q}_G).$$

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

 types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

- types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_k;

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

- types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_k ;
- in progress: types B and D for all ω_k .

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

- types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_k ;
- in progress: types B and D for all ω_k .

Proof:

• start with the Chevalley formula for $QK_T(G/B)$;

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

- types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_k ;
- in progress: types B and D for all ω_k .

Proof:

- start with the Chevalley formula for $QK_T(G/B)$;
- ▶ apply the $\mathbb{Z}[P]$ -module surjection $QK_T(G/B) \rightarrow QK_T(G/P_J)$ [Kato];

For $k \in I$, let P_J be the maximal parabolic subgroup for $J := I \setminus \{k\}.$

We give cancellation-free Chevalley formulas for $QK_T(G/P_J) \simeq K_T(G/P_J) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q_k][P]$ in the following cases:

- types A, B, D, E when ω_k is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_k ;
- in progress: types B and D for all ω_k .

Proof:

- start with the Chevalley formula for $QK_T(G/B)$;
- ▶ apply the $\mathbb{Z}[P]$ -module surjection $QK_T(G/B) \rightarrow QK_T(G/P_J)$ [Kato];
- perform all cancellations via a sign-reversing involution.

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $QK(Fl_n)$.

・ロト・日本・モート モー うへぐ

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $QK(Fl_n)$.

Given a degree $d = (d_1, \ldots, d_{n-1})$, let $N_{S_k, w}^{\nu, d}$ be the coefficient of $Q_1^{d_1} \cdots Q_{n-1}^{d_{n-1}}[\mathcal{O}^{\nu}]$ in the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$.

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $QK(Fl_n)$.

Given a degree $d = (d_1, \ldots, d_{n-1})$, let $N_{s_k,w}^{\nu,d}$ be the coefficient of $Q_1^{d_1} \cdots Q_{n-1}^{d_{n-1}}[\mathcal{O}^{\nu}]$ in the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{I \setminus \{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \setminus \{k\}}$ (constructed explicitly), such that $N_{s_{k},w}^{v,d} = \pm 1$ (sign determined).

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $QK(Fl_n)$.

Given a degree $d = (d_1, \ldots, d_{n-1})$, let $N_{s_k,w}^{\nu,d}$ be the coefficient of $Q_1^{d_1} \cdots Q_{n-1}^{d_{n-1}}[\mathcal{O}^{\nu}]$ in the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{I \setminus \{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \setminus \{k\}}$ (constructed explicitly), such that $N_{s_k,w}^{v,d} = \pm 1$ (sign determined). All other coefficients are 0.

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $QK(Fl_n)$.

Given a degree $d = (d_1, \ldots, d_{n-1})$, let $N_{s_k,w}^{v,d}$ be the coefficient of $Q_1^{d_1} \cdots Q_{n-1}^{d_{n-1}}[\mathcal{O}^v]$ in the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{I \setminus \{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \setminus \{k\}}$ (constructed explicitly), such that $N_{s_k,w}^{v,d} = \pm 1$ (sign determined).

All other coefficients are 0.

Theorem. [L.-Naito-Sagaki] In the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$ there is a minimum and a maximum degree (with respect to the componentwise order), which are constructed explicitly.