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Notation

G semisimple Lie group over C.

T ⊂ B ⊂ G , T maximal torus, B Borel subgroup.

N unipotent radical, B = TN.

P weight lattice, ωi fundamental weights (i ∈ I ),
P+ dominant weights.

Q root lattice, Q∨ coroot lattice, αi simple roots (i ∈ I ).

Z[P] = R(T ) =
⊕

λ∈P Zeλ.

W finite Weyl group, si simple reflections, w◦ longest element.



Main goals

Chevalley formula for KT (G/B) (as module over KT (pt) = Z[P]),
for any w ∈W and λ ∈ P, where Lλ := G ×B C−λ:

[Lλ] · [OXw ] =
∑

v∈W , µ∈P
cλ,µw ,v e

µ [OXv ] , cλ,µw ,v ∈ Z .

[L.-Postnikov]: combinatorial Chevalley formula in terms of the
alcove model.

[L.-Shimozono]: generalization to Kashiwara’s thick flag manifold
for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

I a Chevalley formula for KT (QG ), with QG the semi-infinite
flag manifold corresponding to G ;

I Chevalley formulas for QKT (G/B) and QKT (G/P);

I applications: more explicit computations and results in type A.
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The semi-infinite flag manifold

Qrat
G is the reduced ind-scheme associated to

G (C((z)))/(T · N(C((z)))) .

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato,
etc.]

Semi-infinite Schubert varieties QG (x), for x ∈Waff = W n Q∨.

We concentrate on QG := QG (e) with T × C∗ action, where C∗
acts by loop rotation.

KT×C∗(QG ) has a Z[q, q−1][P]-basis of classes [OQG (x)] of the

structure sheaves of QG (x), for x ∈W≥0
aff = W n Q∨,+.
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The Chevalley formula for QG

It expresses the tensor product of [OQG (x)] with the class of a line
bundle [OQG

(λ)], for λ ∈ P.

Previous work:

I [Kato-Naito-Sagaki] Chevalley formula (infinite) for λ ∈ P+,
in terms of quantum Lakshmibai-Seshadri (LS) paths;

I [Naito-Orr-Sagaki] Chevalley formula (finite) for λ ∈ P−, in
terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine
algebras and the related combinatorics [Ishii-Naito-Sagaki,
L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].

[L.-Naito-Sagaki]:

I translate the Chevalley formulas for λ ∈ P+ and λ ∈ P− from
quantum LS paths to the quantum alcove model (below);

I generalize the new formulas to arbitrary λ ∈ P, via
combinatorics of the quantum alcove model.
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Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W , denoted QBG(W ), is the
directed graph with labeled edges

w
α−→ wsα , where

`(wsα) = `(w) + 1 (covers of Bruhat order) , or

`(wsα) = `(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)

It originates in the Chevalley formula for the quantum cohomology
of flag varieties [Fulton-Woodward].

It has a natural lift to the (covers of the) Bruhat order on the
affine Weyl group Waff [Lam-Shimozono].
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Hasse diagram of the Bruhat order for S3:
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Quantum Bruhat graph for S3:
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The quantum alcove model

Given a weight λ, we associate with it a sequence of roots, called a
λ-chain:

Γ = (β1, . . . , βm) .

This is determined by a reduced decomposition of the affine Weyl
group element corresponding to A◦ − λ (where A◦ is the
fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A◦ to
A◦ − λ.
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Example. Type A2, λ = (3, 1, 0) = 3ε1 + ε2,
Γ = ( (1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3) ).

=s

αα

ε

ε

ε

−2,

0,α

α
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The quantum alcove model (cont.)

Given Γ = (β1, . . . , βm), let ri := sβi and r̂i := sβi ,−li .

The objects of the model: subsets of positions in Γ

A = {j1 < . . . < js} ⊆ {1, . . . ,m} .

For w ∈W and A, construct the chain π(w ,A) of elements in W :

w0 = w , . . . , wi := wrj1 . . . rji , . . . , ws = end(w ,A) .

The main structure structure: w -admissible subsets

A(w , Γ) := {A : π(w ,A) path in QBG(W )} .
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The quantum alcove model (cont.)

We associate the following statistics with a pair (w ,A), for
A = {j1 < . . . < js} ∈ A(w , Γ):

I wt(w ,A) := −wr̂j1 . . . r̂js (−λ) ;

I A− := {ji ∈ A : wrj1 . . . rji−1
> wrj1 . . . rji−1

rji} ;

I down(w ,A) :=
∑

j∈A− |βj |∨ ∈ Q∨,+ ;

I height(w ,A) :=
∑

j∈A− sgn(βj)l̃j , for l̃i := 〈λ, β∨i 〉 − li .
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The Chevalley formula for QG

Let λ =
∑

i∈I λiωi be an arbitrary weight (λi ∈ Z).

Let Γ(λ) = (β1, . . . , βm) be an arbitrary λ-chain.

Let Par(λ) denote the set of I -tuples of partitions χ = (χ(i))i∈I
such that χ(i) is a partition of length at most max(λi , 0).

Set |χ| :=
∑

i∈I |χ(i)|, ι(χ) :=
∑

i∈I χ
(i)
1 α∨i ∈ Q∨,+.

Theorem. [L.-Naito-Sagaki] Let x = wtξ ∈W≥0
aff . Then, in

KT×C∗(QG ), we have

[OQG
(−w◦λ)] · [OQG (x)] =∑

A∈A(w ,Γ(λ))

∑
χ∈Par(λ)

(−1)n(A)q−height(w ,A)−〈λ,ξ〉−|χ| ewt(w ,A)·

· [OQG (end(w ,A)tξ+down(w,A)+ι(χ))] ,

where n(A), for A = {j1 < · · · < js}, is the number of negative
roots in {βj1 , . . . , βjs}.
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Quantum K -theory

QK (X ) defined by Y.-P. Lee for a projective variety X ; product in
terms of the quantum K -invariants of Gromov-Witten type.

Consider variables Qi for i ∈ I , and let

Z[Q] := Z[Q1, . . . ,Qr ] , Z[Q][P] := Z[Q]⊗Z Z[P] .

QKT (G/B) (small) is defined on KT (G/B)⊗Z[P] Z[Q][P]
[Anderson-Chen-Tseng].

The algebra QKT (G/B) has a Z[Q][P]-basis given by the classes
[Ow ] of the structure sheaves of (opposite) Schubert varieties in
G/B, for w ∈W .

Given ξ = d1α
∨
1 + · · ·+ drα

∨
r in Q∨,+, let Qξ := Qd1

1 · · ·Qdr
r .
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The Chevalley formula in QKT (G/B)

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let k ∈ I ,
and fix a (−ωk)-chain of roots Γ(−ωk). Then, in QKT (G/B), we
have the cancellation-free formula:

[Osk ] · [Ow ] = (1− ew(ωk )−ωk ) [Ow ]+∑
A∈A(w ,Γ(−ωk ))\{∅}

(−1)|A|−1 Qdown(w ,A) e−ωk−wt(w ,A) [Oend(w ,A)] .

Proof: Translate the (anti-dominant) Chevalley formula for the
semi-infinite flag manifold via Kato’s isomorphism; cf. Peterson’s
isomorphism and its extension to K -theory [Peterson, Lam-
Shimozono, Lam-Li-Mihalcea-Shimozono, Ikeda-Iwao-Maeno].

Theorem. [Kato] There is a Z[P]-module isomorphism respecting
products

QKT (G/B)
'−→ K ′T (QG ) ⊂ KT (QG ) .
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The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



The quantum K -theory of partial flag manifolds

For k ∈ I , let PJ be the maximal parabolic subgroup for
J := I \ {k}.

We give cancellation-free Chevalley formulas for
QKT (G/PJ) ' KT (G/PJ)⊗Z[P] Z[Qk ][P] in the following cases:

I types A, B, D, E when ωk is minuscule (different from
[Buch-Chaput-Mihalcea-Perrin]);

I type C for all ωk ;

I in progress: types B and D for all ωk .

Proof:

I start with the Chevalley formula for QKT (G/B);

I apply the Z[P]-module surjection QKT (G/B)→ QKT (G/PJ)
[Kato];

I perform all cancellations via a sign-reversing involution.



Type An−1: QK (Fln)

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum
Grothendieck polynomials [L.-Maeno] represent Schubert classes in
QK (Fln).

Given a degree d = (d1, . . . , dn−1), let Nv ,d
sk ,w be the coefficient of

Qd1
1 · · ·Q

dn−1

n−1 [Ov ] in the expansion of [Osk ] · [Ow ].

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset
σWI\{k} not containing v , there exist unique d and w ∈ σWI\{k}

(constructed explicitly), such that Nv ,d
sk ,w = ±1 (sign determined).

All other coefficients are 0.

Theorem. [L.-Naito-Sagaki] In the expansion of [Osk ] · [Ow ] there
is a minimum and a maximum degree (with respect to the
componentwise order), which are constructed explicitly.
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