A combinatorial Chevalley formula for semi-infinite flag manifolds and its applications

Cristian Lenart

State University of New York at Albany
Workshop "Geometry and Combinatorics from Root Systems" ICERM, March 2021

Joint work with Satoshi Naito (Tokyo Institute of Technology) and Daisuke Sagaki (Tsukuba University).
arXiv:2010.06143, forthcoming paper
Cristian Lenart was partially supported by the NSF grant DMS-1855592.

Notation

G semisimple Lie group over \mathbb{C}.
$T \subset B \subset G, T$ maximal torus, B Borel subgroup.
N unipotent radical, $B=T N$.
P weight lattice, ω_{i} fundamental weights $(i \in I)$, P^{+}dominant weights.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
$\mathbb{Z}[P]=R(T)=\bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}$.
W finite Weyl group, s_{i} simple reflections, w_{\circ} longest element.

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.
[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.
[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

- a Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$, with \mathbf{Q}_{G} the semi-infinite flag manifold corresponding to G;

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$), for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times{ }_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.
[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

- a Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$, with \mathbf{Q}_{G} the semi-infinite flag manifold corresponding to G;
- Chevalley formulas for $Q K_{T}(G / B)$ and $Q K_{T}(G / P)$;

Main goals

Chevalley formula for $K_{T}(G / B)$ (as module over $\left.K_{T}(\mathrm{pt})=\mathbb{Z}[P]\right)$, for any $w \in W$ and $\lambda \in P$, where $\mathcal{L}_{\lambda}:=G \times{ }_{B} \mathbb{C}_{-\lambda}$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov]: combinatorial Chevalley formula in terms of the alcove model.
[L.-Shimozono]: generalization to Kashiwara's thick flag manifold for symmetrizable Kac-Moody groups (infinite alcove model).

Using the quantum alcove model, we derive:

- a Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$, with \mathbf{Q}_{G} the semi-infinite flag manifold corresponding to G;
- Chevalley formulas for $Q K_{T}(G / B)$ and $Q K_{T}(G / P)$;
- applications: more explicit computations and results in type A.

The semi-infinite flag manifold

$\mathbf{Q}_{G}^{\text {rat }}$ is the reduced ind-scheme associated to

$$
G(\mathbb{C}((z))) /(T \cdot N(\mathbb{C}((z)))) .
$$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

The semi-infinite flag manifold

$\mathbf{Q}_{G}^{\text {rat }}$ is the reduced ind-scheme associated to

$$
G(\mathbb{C}((z))) /(T \cdot N(\mathbb{C}((z)))) .
$$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_{G}(x)$, for $x \in W_{\text {aff }}=W \ltimes Q^{\vee}$.

The semi-infinite flag manifold

$\mathbf{Q}_{G}^{\mathrm{rat}}$ is the reduced ind-scheme associated to

$$
G(\mathbb{C}((z))) /(T \cdot N(\mathbb{C}((z)))) .
$$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_{G}(x)$, for $x \in W_{\text {aff }}=W \ltimes Q^{\vee}$.
We concentrate on $\mathbf{Q}_{G}:=\mathbf{Q}_{G}(e)$ with $T \times \mathbb{C}^{*}$ action, where \mathbb{C}^{*} acts by loop rotation.

The semi-infinite flag manifold

$\mathbf{Q}_{G}^{\text {rat }}$ is the reduced ind-scheme associated to

$$
G(\mathbb{C}((z))) /(T \cdot N(\mathbb{C}((z)))) .
$$

[Feigin-Frenkel, Finkelberg-Mirkovic, Braverman-Finkelberg, Kato, etc.]

Semi-infinite Schubert varieties $\mathbf{Q}_{G}(x)$, for $x \in W_{\text {aff }}=W \ltimes Q^{\vee}$.
We concentrate on $\mathbf{Q}_{G}:=\mathbf{Q}_{G}(e)$ with $T \times \mathbb{C}^{*}$ action, where \mathbb{C}^{*} acts by loop rotation.
$K_{T \times \mathbb{C}^{*}}\left(\mathbf{Q}_{G}\right)$ has a $\mathbb{Z}\left[q, q^{-1}\right][P]$-basis of classes $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ of the structure sheaves of $\mathbf{Q}_{G}(x)$, for $x \in W_{\mathrm{aff}}^{\geq 0}=W \ltimes Q^{\mathrm{V},+}$.

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.

Previous work:

- [Kato-Naito-Sagaki] Chevalley formula (infinite) for $\lambda \in P^{+}$, in terms of quantum Lakshmibai-Seshadri (LS) paths;

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.
Previous work:

- [Kato-Naito-Sagaki] Chevalley formula (infinite) for $\lambda \in P^{+}$, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- [Naito-Orr-Sagaki] Chevalley formula (finite) for $\lambda \in P^{-}$, in terms of quantum LS paths.

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.
Previous work:

- [Kato-Naito-Sagaki] Chevalley formula (infinite) for $\lambda \in P^{+}$, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- [Naito-Orr-Sagaki] Chevalley formula (finite) for $\lambda \in P^{-}$, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [lshii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.
Previous work:

- [Kato-Naito-Sagaki] Chevalley formula (infinite) for $\lambda \in P^{+}$, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- [Naito-Orr-Sagaki] Chevalley formula (finite) for $\lambda \in P^{-}$, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [Ishii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].
[L.-Naito-Sagaki]:

- translate the Chevalley formulas for $\lambda \in P^{+}$and $\lambda \in P^{-}$from quantum LS paths to the quantum alcove model (below);

The Chevalley formula for \mathbf{Q}_{G}

It expresses the tensor product of $\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]$ with the class of a line bundle $\left[\mathcal{O}_{\mathbf{Q}_{G}}(\lambda)\right]$, for $\lambda \in P$.
Previous work:

- [Kato-Naito-Sagaki] Chevalley formula (infinite) for $\lambda \in P^{+}$, in terms of quantum Lakshmibai-Seshadri (LS) paths;
- [Naito-Orr-Sagaki] Chevalley formula (finite) for $\lambda \in P^{-}$, in terms of quantum LS paths.

Proof idea: connection to level 0 extremal weight modules of affine algebras and the related combinatorics [Ishii-Naito-Sagaki, L.-Naito-Sagaki-Schilling-Shimozono, Naito-Sagaki, etc.].
[L.-Naito-Sagaki]:

- translate the Chevalley formulas for $\lambda \in P^{+}$and $\lambda \in P^{-}$from quantum LS paths to the quantum alcove model (below);
- generalize the new formulas to arbitrary $\lambda \in P$, via combinatorics of the quantum alcove model.

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted $\operatorname{QBG}(W)$, is the directed graph with labeled edges

$$
\begin{gathered}
w \xrightarrow{\alpha} w s_{\alpha}, \quad \text { where } \\
\ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad \text { (covers of Bruhat order), or } \\
\ell\left(w s_{\alpha}\right)=\ell(w)-2 \operatorname{ht}\left(\alpha^{\vee}\right)+1 . \\
\text { (If } \left.\alpha^{\vee}=\sum_{i} c_{i} \alpha_{i}^{\vee}, \text { then } \operatorname{ht}\left(\alpha^{\vee}\right):=\sum_{i} c_{i} .\right)
\end{gathered}
$$

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted $\operatorname{QBG}(W)$, is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}, \quad \text { where }
$$

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad \text { (covers of Bruhat order), } \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1 .
\end{aligned}
$$

$$
\text { (If } \alpha^{\vee}=\sum_{i} c_{i} \alpha_{i}^{\vee} \text {, then ht }\left(\alpha^{\vee}\right):=\sum_{i} c_{i} \text {.) }
$$

It originates in the Chevalley formula for the quantum cohomology of flag varieties [Fulton-Woodward].

Quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted $\operatorname{QBG}(W)$, is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}, \quad \text { where }
$$

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad \text { (covers of Bruhat order), } \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1 .
\end{aligned}
$$

$$
\text { (If } \alpha^{\vee}=\sum_{i} c_{i} \alpha_{i}^{\vee} \text {, then ht }\left(\alpha^{\vee}\right):=\sum_{i} c_{i} \text {.) }
$$

It originates in the Chevalley formula for the quantum cohomology of flag varieties [Fulton-Woodward].
It has a natural lift to the (covers of the) Bruhat order on the affine Weyl group $W_{\text {aff }}$ [Lam-Shimozono].

Hasse diagram of the Bruhat order for S_{3} :

Quantum Bruhat graph for S_{3} :

The quantum alcove model

Given a weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

The quantum alcove model

Given a weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ}-\lambda$ (where A_{\circ} is the fundamental alcove).

The quantum alcove model

Given a weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ}-\lambda$ (where A_{\circ} is the fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A_{\circ} to $A_{\circ}-\lambda$.

Example. Type $A_{2}, \lambda=(3,1,0)=3 \varepsilon_{1}+\varepsilon_{2}$,
$\Gamma=((1,2),(1,3),(2,3),(1,3),(1,2),(1,3))$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W :

$$
w_{0}=w, \quad \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \ldots, \quad w_{s}=\operatorname{end}(w, A)
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W :

$$
w_{0}=w, \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \ldots, \quad w_{s}=\operatorname{end}(w, A)
$$

The main structure structure: w-admissible subsets

$$
\mathcal{A}(w, \Gamma):=\{A: \pi(w, A) \text { path in } \operatorname{QBG}(W)\}
$$

The quantum alcove model (cont.)

We associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma):$

The quantum alcove model (cont.)

We associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma):$

- $\mathrm{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda)$;

The quantum alcove model (cont.)

We associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma):$
$-\operatorname{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda) ;$

- $A^{-}:=\left\{j_{i} \in A: w r_{j_{1}} \ldots r_{j_{i-1}}>w r_{j_{1}} \ldots r_{j_{i-1}} r_{j_{i}}\right\} ;$

The quantum alcove model (cont.)

We associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma):$
$-\operatorname{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda) ;$

- $A^{-}:=\left\{j_{i} \in A: w r_{j_{1}} \ldots r_{j_{i-1}}>w r_{j_{1}} \ldots r_{j_{i-1}} r_{j_{i}}\right\} ;$
- down $(w, A):=\sum_{j \in A^{-}}\left|\beta_{j}\right|^{\vee} \in Q^{\vee,+} ;$

The quantum alcove model (cont.)

We associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma):$
$-\operatorname{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda) ;$

- $A^{-}:=\left\{j_{i} \in A: w r_{j_{1}} \ldots r_{j_{i-1}}>w r_{j_{1}} \ldots r_{j_{i-1}} r_{j_{i}}\right\} ;$
- down $(w, A):=\sum_{j \in A^{-}}\left|\beta_{j}\right|^{\vee} \in Q^{\vee,+} ;$
- height $(w, A):=\sum_{j \in A^{-}} \operatorname{sgn}\left(\beta_{j}\right) \widetilde{\jmath}_{j}$, for $\widetilde{l}_{i}:=\left\langle\lambda, \beta_{i}^{\vee}\right\rangle-I_{i}$.

The Chevalley formula for \mathbf{Q}_{G}
Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of I-tuples of partitions $\chi=\left(\chi^{(i)}\right)_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max \left(\lambda_{i}, 0\right)$.

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of I-tuples of partitions $\chi=\left(\chi^{(i)}\right)_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max \left(\lambda_{i}, 0\right)$.
Set $|\chi|:=\sum_{i \in I}\left|\chi^{(i)}\right|, \quad \iota(\chi):=\sum_{i \in I} \chi_{1}^{(i)} \alpha_{i}^{\vee} \in Q^{\vee,+}$.

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of I-tuples of partitions $\chi=\left(\chi^{(i)}\right)_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max \left(\lambda_{i}, 0\right)$.
Set $|\chi|:=\sum_{i \in I}\left|\chi^{(i)}\right|, \quad \iota(\chi):=\sum_{i \in I} \chi_{1}^{(i)} \alpha_{i}^{\vee} \in Q^{\vee,+}$.
Theorem. [L.-Naito-Sagaki] Let $x=w t_{\xi} \in W_{\text {aff }}^{\geq 0}$. Then, in $K_{T \times \mathbb{C}^{*}}\left(\mathbf{Q}_{G}\right)$, we have

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of I-tuples of partitions $\chi=\left(\chi^{(i)}\right)_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max \left(\lambda_{i}, 0\right)$.
Set $|\chi|:=\sum_{i \in I}\left|\chi^{(i)}\right|, \quad \iota(\chi):=\sum_{i \in I} \chi_{1}^{(i)} \alpha_{i}^{\vee} \in Q^{\vee,+}$.
Theorem. [L.-Naito-Sagaki] Let $x=w t_{\xi} \in W_{\text {aff }}^{\geq 0}$. Then, in $K_{T \times \mathbb{C}^{*}}\left(\mathbf{Q}_{G}\right)$, we have

$$
\begin{aligned}
& {\left[\mathcal{O}_{\mathbf{Q}_{G}}\left(-w_{0} \lambda\right)\right] \cdot\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]=} \\
& \sum_{A \in \mathcal{A}(w, \Gamma(\lambda))} \sum_{\chi \in \overline{\operatorname{Par}(\lambda)}}(-1)^{n(A)} q^{-\operatorname{height}(w, A)-\langle\lambda, \xi\rangle-|\chi|} \mathbf{e}^{\mathrm{wt}(w, A)}
\end{aligned}
$$

$$
\cdot\left[\mathcal{O}_{\left.\mathbf{Q}_{G}\left(\operatorname{end}(w, A) t_{\xi+\operatorname{down}(w, A)+\iota(x)}\right)\right], ~}\right.
$$

The Chevalley formula for \mathbf{Q}_{G}

Let $\lambda=\sum_{i \in I} \lambda_{i} \omega_{i}$ be an arbitrary weight $\left(\lambda_{i} \in \mathbb{Z}\right)$.
Let $\Gamma(\lambda)=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be an arbitrary λ-chain.
Let $\overline{\operatorname{Par}(\lambda)}$ denote the set of I-tuples of partitions $\chi=\left(\chi^{(i)}\right)_{i \in I}$ such that $\chi^{(i)}$ is a partition of length at most $\max \left(\lambda_{i}, 0\right)$.
Set $|\chi|:=\sum_{i \in I}\left|\chi^{(i)}\right|, \quad \iota(\chi):=\sum_{i \in I} \chi_{1}^{(i)} \alpha_{i}^{\vee} \in Q^{\vee,+}$.
Theorem. [L.-Naito-Sagaki] Let $x=w t_{\xi} \in W_{\text {aff }}^{\geq 0}$. Then, in $K_{T \times \mathbb{C}^{*}}\left(\mathbf{Q}_{G}\right)$, we have

$$
\begin{aligned}
& {\left[\mathcal{O}_{\mathbf{Q}_{G}}\left(-w_{o} \lambda\right)\right] \cdot\left[\mathcal{O}_{\mathbf{Q}_{G}(x)}\right]=} \\
& \sum_{A \in \mathcal{A}(w, \Gamma(\lambda))} \sum_{\chi \in \operatorname{Par}(\lambda)}(-1)^{n(A)} q^{-\operatorname{height}(w, A)-\langle\lambda, \xi\rangle-|\chi|} \mathbf{e}^{\mathrm{wt}(w, A)} \\
& \cdot {\left[\mathcal{O}_{\mathbf{Q}_{G}\left(\operatorname{end}(w, A) t_{\xi+\operatorname{down}(w, A)+\iota(\chi))}\right]}\right.}
\end{aligned}
$$

where $n(A)$, for $A=\left\{j_{1}<\cdots<j_{s}\right\}$, is the number of negative roots in $\left\{\beta_{j_{1}}, \ldots, \beta_{j_{s}}\right\}$.

Quantum K-theory

$Q K(X)$ defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Quantum K-theory

$Q K(X)$ defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

Quantum K-theory

$Q K(X)$ defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

$Q K_{T}(G / B)$ (small) is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

Quantum K-theory

$Q K(X)$ defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

$Q K_{T}(G / B)($ small $)$ is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $Q K_{T}(G / B)$ has a $\mathbb{Z}[Q][P]$-basis given by the classes [\mathcal{O}^{w}] of the structure sheaves of (opposite) Schubert varieties in G / B, for $w \in W$.

Quantum K-theory

$Q K(X)$ defined by Y.-P. Lee for a projective variety X; product in terms of the quantum K-invariants of Gromov-Witten type.

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

$Q K_{T}(G / B)($ small $)$ is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $Q K_{T}(G / B)$ has a $\mathbb{Z}[Q][P]$-basis given by the classes [\mathcal{O}^{w}] of the structure sheaves of (opposite) Schubert varieties in G / B, for $w \in W$.

Given $\xi=d_{1} \alpha_{1}^{\vee}+\cdots+d_{r} \alpha_{r}^{\vee}$ in $Q^{\vee,+}$, let $Q^{\xi}:=Q_{1}^{d_{1}} \cdots Q_{r}^{d_{r}}$.

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

$$
\begin{aligned}
& {\left[\mathcal{O}^{S_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]=\left(1-\mathbf{e}^{w\left(\omega_{k}\right)-\omega_{k}}\right)\left[\mathcal{O}^{w}\right]+} \\
& \quad \sum_{A \in \mathcal{A}\left(w, \Gamma\left(-\omega_{k}\right)\right) \backslash\{\emptyset\}}(-1)^{|A|-1} Q^{\operatorname{down}(w, A)} \mathbf{e}^{-\omega_{k}-\operatorname{wt}(w, A)}\left[\mathcal{O}^{\operatorname{end}(w, A)}\right]
\end{aligned}
$$

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

$$
\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]=\left(1-\mathbf{e}^{w\left(\omega_{k}\right)-\omega_{k}}\right)\left[\mathcal{O}^{w}\right]+
$$

$$
\sum_{A \in \mathcal{A}\left(w, \Gamma\left(-\omega_{k}\right)\right) \backslash\{\emptyset\}}(-1)^{|A|-1} Q^{\operatorname{down}(w, A)} \mathbf{e}^{-\omega_{k}-w t(w, A)}\left[\mathcal{O}^{\operatorname{end}(w, A)}\right] .
$$

Proof: Translate the (anti-dominant) Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism; cf. Peterson's isomorphism and its extension to K-theory [Peterson, LamShimozono, Lam-Li-Mihalcea-Shimozono, Ikeda-Iwao-Maeno].

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

$$
\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]=\left(1-\mathbf{e}^{w\left(\omega_{k}\right)-\omega_{k}}\right)\left[\mathcal{O}^{w}\right]+
$$

$$
\sum_{A \in \mathcal{A}\left(w, \Gamma\left(-\omega_{k}\right)\right) \backslash\{\emptyset\}}(-1)^{|A|-1} Q^{\operatorname{down}(w, A)} \mathbf{e}^{-\omega_{k}-w t(w, A)}\left[\mathcal{O}^{\operatorname{end}(w, A)}\right]
$$

Proof: Translate the (anti-dominant) Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism; cf. Peterson's isomorphism and its extension to K-theory [Peterson, LamShimozono, Lam-Li-Mihalcea-Shimozono, Ikeda-Iwao-Maeno].
Theorem. [Kato] There is a $\mathbb{Z}[P]$-module isomorphism respecting products

$$
Q K_{T}(G / B) \xrightarrow{\simeq} K_{T}^{\prime}\left(\mathbf{Q}_{G}\right) \subset K_{T}\left(\mathbf{Q}_{G}\right) .
$$

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_{k};

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_{k};
- in progress: types B and D for all ω_{k}.

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_{k};
- in progress: types B and D for all ω_{k}.

Proof:

- start with the Chevalley formula for $Q K_{T}(G / B)$;

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_{k};
- in progress: types B and D for all ω_{k}.

Proof:

- start with the Chevalley formula for $Q K_{T}(G / B)$;
- apply the $\mathbb{Z}[P]$-module surjection $Q K_{T}(G / B) \rightarrow Q K_{T}\left(G / P_{J}\right)$ [Kato];

The quantum K-theory of partial flag manifolds

For $k \in I$, let P_{J} be the maximal parabolic subgroup for $J:=I \backslash\{k\}$.

We give cancellation-free Chevalley formulas for $Q K_{T}\left(G / P_{J}\right) \simeq K_{T}\left(G / P_{J}\right) \otimes_{\mathbb{Z}[P]} \mathbb{Z}\left[Q_{k}\right][P]$ in the following cases:

- types A, B, D, E when ω_{k} is minuscule (different from [Buch-Chaput-Mihalcea-Perrin]);
- type C for all ω_{k};
- in progress: types B and D for all ω_{k}.

Proof:

- start with the Chevalley formula for $Q K_{T}(G / B)$;
- apply the $\mathbb{Z}[P]$-module surjection $Q K_{T}(G / B) \rightarrow Q K_{T}\left(G / P_{J}\right)$ [Kato];
- perform all cancellations via a sign-reversing involution.

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $Q K\left(F I_{n}\right)$.

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in QK $\left(F I_{n}\right)$.

Given a degree $d=\left(d_{1}, \ldots, d_{n-1}\right)$, let $N_{s_{k}, w}^{v, d}$ be the coefficient of $Q_{1}^{d_{1}} \cdots Q_{n-1}^{d_{n-1}}\left[\mathcal{O}^{\nu}\right]$ in the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$.

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $Q K\left(F I_{n}\right)$.

Given a degree $d=\left(d_{1}, \ldots, d_{n-1}\right)$, let $N_{s_{k}, w}^{v, d}$ be the coefficient of $Q_{1}^{d_{1}} \cdots Q_{n-1}^{d_{n-1}}\left[\mathcal{O}^{\nu}\right]$ in the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{ハ \backslash\{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \backslash\{k\}}$ (constructed explicitly), such that $N_{s_{k}, w}^{v, d}= \pm 1$ (sign determined).

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $Q K\left(F I_{n}\right)$.

Given a degree $d=\left(d_{1}, \ldots, d_{n-1}\right)$, let $N_{s_{k}, w}^{v, d}$ be the coefficient of $Q_{1}^{d_{1}} \cdots Q_{n-1}^{d_{n-1}}\left[\mathcal{O}^{\nu}\right]$ in the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{ハ \backslash\{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \backslash\{k\}}$ (constructed explicitly), such that $N_{S_{k}, w}^{v, d}= \pm 1$ (sign determined). All other coefficients are 0 .

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Maeno] The quantum Grothendieck polynomials [L.-Maeno] represent Schubert classes in $Q K\left(F I_{n}\right)$.

Given a degree $d=\left(d_{1}, \ldots, d_{n-1}\right)$, let $N_{s_{k}, w}^{v, d}$ be the coefficient of $Q_{1}^{d_{1}} \cdots Q_{n-1}^{d_{n-1}}\left[\mathcal{O}^{\nu}\right]$ in the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$.

Theorem. [L.-Naito-Sagaki] For every k, v and parabolic coset $\sigma W_{ハ \backslash\{k\}}$ not containing v, there exist unique d and $w \in \sigma W_{I \backslash\{k\}}$ (constructed explicitly), such that $N_{s_{k}, w}^{v, d}= \pm 1$ (sign determined). All other coefficients are 0 .

Theorem. [L.-Naito-Sagaki] In the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$ there is a minimum and a maximum degree (with respect to the componentwise order), which are constructed explicitly.

