Ideals of skew-symmetric matrix Schubert varieties

Brendan Pawlowski (University of Southern California) joint with Eric Marberg

March 25, 2021

Matrix Schubert varieties

- $[n]=\{1,2, \ldots, n\}$ and M_{n} the space of $n \times n$ matrices over an algebraically closed field \mathbb{K}.
- $A_{I J}=$ submatrix of A in rows I and columns J.

The matrix Schubert variety of $w \in S_{n}$ (identified with its permutation matrix) is

$$
X_{w}=\left\{A \in M_{n}: \operatorname{rank} A_{[i][j]} \leq \operatorname{rank} w_{[i][j]} \forall i, j \in[n]\right\}
$$

Example

If $w=132=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ then $\left(\operatorname{rank} w_{[i][j]}\right)_{i, j \in[3]}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3\end{array}\right)$.
Boxed rank condition implies all others, so
$X_{132}=\left\{A \in M_{3}: \operatorname{rank} A_{[2][2]} \leq 1\right\}=\left\{\left(a_{i j}\right)_{i, j \in[3]}: a_{11} a_{22}-a_{12} a_{21}=0\right\}$.

- The X_{w} are closures of two-sided Borel orbits on M_{n}.
- Torus-equivariant cohomology/K-theory classes of X_{w} are Schubert/Grothendieck polynomials.

Matrix Schubert varieties

- Let $\mathbb{K}\left[M_{n}\right]=\mathbb{K}\left[v_{i j}: i, j \in[n]\right]$ and $V=\left(v_{i j}\right)_{i, j \in[n]}$.
- Fulton: the prime ideal $I\left(X_{w}\right) \subseteq \mathbb{K}\left[M_{n}\right]$ is generated by the minors det $V_{I J}$ where $I \subseteq[i], J \subseteq[j]$ and $|I|=|J|=\operatorname{rank} w_{[j][j]}+1$, for all $i, j \in[n]$.
- Ex.: $I\left(X_{132}\right)=\left(\operatorname{det} V_{[2][2]}\right)=\left(v_{11} v_{22}-v_{12} v_{21}\right)$.

Knutson and Miller:

- These minors form a Gröbner basis of $I\left(X_{w}\right)$ (with respect to, say, reverse lex order on $\mathbb{K}\left[v_{i j}\right]$).
- Recall that the initial ideal init $l\left(X_{w}\right)$ is the monomial ideal generated by the leading terms of each $f \in I\left(X_{w}\right)$.
- init $I\left(X_{w}\right)$ is generated by squarefree monomials, and its Stanley-Reisner complex is shellable with facets in bijection with the pipe dreams of w.

Skew-symmetric matrix Schubert varieties

- $\mathcal{I}_{n}^{\text {FPF }}=$ fixed-point-free involutions in S_{n}.
- e.g. $\mathcal{I}_{4}^{\mathrm{FPF}}=\{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$.
- SSM $_{n}=$ skew-symmetric matrices over \mathbb{K}.

Given $z \in \mathcal{I}_{n}^{\text {FPF }}$ define the skew-symmetric matrix Schubert variety

$$
\mathrm{SSX}_{z}=\mathrm{SSM}_{n} \cap X_{z}=\left\{A \in \mathrm{SSM}_{n}: \operatorname{rank} A_{[i][j]} \leq \operatorname{rank} z_{[i][j]} \forall i, j\right\}
$$

Example
If $z=(1,4)(2,3)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ then $\left(\operatorname{rank} z_{[i][j]}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4\end{array}\right)$ and
$\operatorname{SSX}_{(1,4)(2,3)}=\left\{A \in \operatorname{SSM}_{4}: \operatorname{rank} A_{[3][1]} \leq 0\right\}=\left\{\left(\begin{array}{cccc}0 & 0 & 0 & -a \\ 0 & 0 & -b & -c \\ 0 & b & 0 & -d \\ a & c & d & 0\end{array}\right)\right\}$.

Skew-symmetric matrix Schubert varieties

Why study SSX_{z} ?

- $\mathrm{SSX}_{z}=$ Borel orbit closure on SSM_{n} (hence irreducible)
- Connection to spherical orbits:
$\mathrm{SSM}_{n} \cap \mathrm{GL}_{n} \simeq\left\{\right.$ symplectic bilinear forms on $\left.\mathbb{K}^{n}\right\} \simeq \mathrm{GL}_{n} / \mathrm{Sp}_{n}$, and B-orbits on $\mathrm{GL}_{n} / \mathrm{Sp}_{n} \longleftrightarrow \mathrm{Sp}_{n}$-orbits on GL_{n} / B.
- Ideals $I\left(\mathrm{SSX}_{z}\right)$ generalize families of Pfaffian ideals studied by De Negri, De Negri-Sbarra, Herzog-Trung, Jonsson-Welker, Raghavan-Upadhyay, ...
What is the prime ideal $I\left(\mathrm{SSX}_{z}\right)$? Notation:
- Let $\mathcal{U}=\left(\begin{array}{cccc}0 & -u_{21} & -u_{31} & \cdots \\ u_{21} & 0 & -u_{32} & \cdots \\ u_{31} & u_{32} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$.
- $I\left(\mathrm{SSX}_{z}\right) \subseteq \mathbb{K}\left[\mathrm{SSM}_{n}\right]=\mathbb{K}\left[u_{i j}: 1 \leq j<i \leq n\right]$.

Ideals of skew-symmetric matrix Schubert varieties

Problem: minors of skew-symm. \mathcal{U} need not generate radical ideals.
Example
$\left\{A \in \mathrm{SSM}_{2}: \operatorname{rank} A \leq 1\right\}=\left\{A=\left(\begin{array}{cc}0 & -a \\ a & 0\end{array}\right) \in \mathrm{SSM}_{2}: \operatorname{det} A=a^{2}=0\right\}$.

Solution: if $A \in \mathrm{SSM}_{n}$ then $\operatorname{det}(A)=\operatorname{pf}(A)^{2}$, so use Pfaffians.
Theorem (Marberg-Pawlowski)
Let $z \in \mathcal{I}_{n}^{\mathrm{FPF}}$. The prime ideal I $\left(\mathrm{SSX}_{z}\right)$ is generated by all Pfaffians $\operatorname{pf}\left(\mathcal{U}_{S S}\right)$ where $S \subseteq[i]$ and $|S \cap[j]|>\operatorname{rank} z_{[i][j]}$ for all $j<i \leq n$.

- Linear algebra exercise to show that SSX_{z} is the zero locus of these Pfaffians.
- Harder to show they generate a prime ideal.

Gröbner bases

- Equip $\mathbb{K}\left[\mathrm{SSM}_{n}\right]=\mathbb{K}\left[u_{i j}: 1 \leq j<i \leq n\right]$ with reverse lex order.
- Recall that the initial ideal init $I\left(S S X_{w}\right)$ is the monomial ideal generated by the leading terms of each $f \in I\left(\mathrm{SSX}_{w}\right) \ldots$
- ... and a generating set of $I\left(S S X_{z}\right)$ is a Gröbner basis if its leading terms generate the initial ideal init(I(SSX $\left.\left.{ }_{z}\right)\right)$.

Example

Consider $\mathrm{SSX}_{z}=\left\{A \in \mathrm{SSM}_{6}: \operatorname{rank} A_{[5][3]} \leq 2\right\}$. Ideal is generated by $\operatorname{pf}\left(\mathcal{U}_{S S}\right)$ where $S \subseteq[5]$ and $|S \cap\{1,2,3\}|>2$:

$$
\begin{aligned}
& f_{1}=\operatorname{pf}\left(\mathcal{U}_{1234,1234}\right)=u_{32} u_{41}-u_{31} u_{42}+u_{21} u_{43} \\
& f_{2}=\operatorname{pf}\left(\mathcal{U}_{1235,1235}\right)=u_{32} u_{51}-u_{31} u_{52}+u_{21} u_{53}
\end{aligned}
$$

- Problem: $u_{41} f_{2}-u_{51} f_{1}=u_{31} u_{42} u_{51}+\cdots$, but $u_{31} u_{42} u_{51} \notin\left(u_{32} u_{41}, u_{32} u_{51}\right)$, so $\left\{f_{1}, f_{2}\right\}$ is not a Gröbner basis.
- Worse: init $I(X)=\left(u_{32} u_{41}, u_{32} u_{51}, \underline{u_{31} u_{42} u_{51}}\right)$, so no set of Pfaffians $\operatorname{pf}\left(\mathcal{U}_{S S}\right)$ can be a Gröbner basis for $I(X)$!

Initial ideal of $I\left(\mathrm{SSX}_{z}\right)$

- I(SSX $\left.{ }_{z}\right)$ is generated by Pfaffians, but also contains various minors $\operatorname{det} \mathcal{U}_{A B}$.
- If $A=\left\{a_{0}<\cdots<a_{r}\right\}$ and $B=\left\{b_{0}>\cdots>b_{r}\right\}$, lead term of $\pm \operatorname{det} \mathcal{U}_{A B}$ is antidiagonal $u_{a_{0} b_{0}} \cdots u_{a_{r} b_{r}}$ with transformations $u_{j i} \mapsto u_{i j}$ if $j<i$ and $u_{i i} \mapsto 0$ applied.
- Define $u_{A B}$ as the squarefree radical of this monomial.

Example

- $A=\{1,2,3\}, B=\{3,2,1\} \rightsquigarrow u_{13} u_{22} u_{31} \rightsquigarrow u_{A B}=0$
- $A=\{1,3,4\}, B=\{4,2,1\} \rightsquigarrow u_{14} u_{32} u_{41} \rightsquigarrow u_{41}^{2} u_{32} \rightsquigarrow u_{A B}=u_{41} u_{32}$
- $A=\{1,4,5\}, B=\{3,2,1\} \rightsquigarrow u_{13} u_{42} u_{51} \rightsquigarrow u_{A B}=u_{31} u_{42} u_{51}$

Theorem (Marberg-Pawlowski)
init $\left(I\left(\mathrm{SSX}_{z}\right)\right)$ is generated by all monomials $u_{A B}$ for $A \subseteq[i], B \subseteq[j]$ with $|A|=|B|=\operatorname{rank} z_{[i][j]}+1$, for all $1 \leq j<i \leq n$.

Gröbner bases for I($\left.X_{z}\right)$

Theorem (Marberg-Pawlowski)
For $z \in \mathcal{I}_{n}^{\mathrm{FPF}}$, a Gröbner basis for $I\left(X_{z}\right)$ is given by the polynomials

$$
g_{A B}:=\operatorname{pf}\left[\begin{array}{cc}
\mathcal{U}_{B B} & \mathcal{U}_{B A} \\
\mathcal{U}_{A B} & 0
\end{array}\right]
$$

running over an explicit collection of sets $A, B \subseteq[n]$ depending on z.

- If $A=\emptyset$, then $g_{A B}=\operatorname{pf}\left(\mathcal{U}_{B B}\right)$.
- If $A \cap B=\emptyset$ and $|A|=|B|$, then $g_{A B}= \pm \operatorname{det}\left(\mathcal{U}_{A B}\right)$ (cf. identity of Brill)

Fpf involution pipe dreams

An fpf involution pipe dream for $z=(1,3)(2,4)=3412 \in \mathcal{I}_{4}^{\mathrm{FPF}}$:

An fpf involution pipe dream for $z \in S_{n}$ is...

- a symmetric tiling of $[n] \times[n]$ with tiles + and \because •
- where the $i^{\text {th }}$ pipe on the left is the $z(i)^{\text {th }}$ pipe on the top...
- and no pair of pipes crosses more than once.

Identify an fpf involution pipe dream with its set of + tiles strictly below the diagonal, e.g. $\{(2,1)\}$ above.

Primary decompositions

Theorem (Marberg-Pawlowski)

For $z \in \mathcal{I}_{n}^{\text {FPF }}$, init $I\left(\operatorname{SSX}_{z}\right)=\bigcap_{D}\left(u_{i j}:(i, j) \in D\right)$ where D runs over the set of fpf involution pipe dreams of z.
That is: the zero locus of init $l\left(\mathrm{SSX}_{z}\right)$ is the union of linear subspaces $\left\{A \in \operatorname{SSM}_{n}: A_{i j}=0\right.$ for $\left.(i, j) \in D\right\}$.
Example
$z=(1,3)(2,5)(4,6)$ has two fpf involution pipe dreams:

- $I\left(\operatorname{SSX}_{(1,3)(2,5)(4,6)}\right)=\left(u_{21}, u_{32} u_{41}-u_{31} u_{42}+u_{43} u_{21}\right)$
- init $I\left(\operatorname{SSX}_{(1,3)(2,5)(4,6)}\right)=\left(u_{21}, u_{32} u_{41}\right)=\left(u_{21}, u_{32}\right) \cap\left(u_{21}, u_{41}\right)$.

Primary decompositions

Corollaries à la Knutson-Miller:

- Torus-equivariant cohomology class of SSX_{z} is $\sum_{D} \prod_{(i, j) \in D}\left(x_{i}+x_{j}\right)$ where D runs over fpf involution pipe dreams of z.
- Similar formula for equivariant K-theory class in terms of nonreduced fpf involution pipe dreams
- Stanley-Reisner complex of init $I\left(\mathrm{SSX}_{z}\right)$ has facets in bijection with fpf inv. pipe dreams of z, and is shellable.

Proofs

Induct on Bruhat order restricted to $\mathcal{I}_{n}^{\text {FPF }}$:

- $\mathrm{SSX}_{z} \cap\left\{A \in \mathrm{SSM}_{n}: \operatorname{rank} A_{[p][q]} \leq 0\right\}=\bigcup_{y} \mathrm{SSX}_{y}$ as sets.
- True as schemes? i.e. does

$$
\begin{equation*}
I\left(\mathrm{SSX}_{z}\right)+\left(u_{p q}\right)=\bigcap_{y} I\left(\mathrm{SSX}_{y}\right) ? \tag{1}
\end{equation*}
$$

- Define J_{z} as ostensible initial ideal, show using pipe dream combinatorics that $J_{z}+\left(u_{p q}\right)=\bigcap_{y} J_{y}$.
- Gives enough control to conclude that $J_{z}=$ init $I\left(\mathrm{SSX}_{z}\right)$, that (1) holds, and that $I\left(\mathrm{SSX}_{z}\right)$ equals the ideal generated by appropriate Pfaffians.

Proofs

- This is different from Knutson and Miller's approach, and gives new proofs of many of their results on matrix Schubert varieties.
- Hope: apply this technique to the more difficult setting of symmetric matrix Schubert varieties (related to O_{n}-orbits on the type A flag variety).

