Ideals of skew-symmetric matrix Schubert varieties

Brendan Pawlowski (University of Southern California) joint with Eric Marberg

March 25, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Matrix Schubert varieties

- ▶ [n] = {1, 2, ..., n} and M_n the space of n × n matrices over an algebraically closed field K.
- A_{IJ} = submatrix of A in rows I and columns J.

The matrix Schubert variety of $w \in S_n$ (identified with its permutation matrix) is

$$X_w = \{A \in M_n : \operatorname{rank} A_{[i][j]} \le \operatorname{rank} w_{[i][j]} orall i, j \in [n]\}.$$

Example

If
$$w = 132 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 then $(\operatorname{rank} w_{[i][j]})_{i,j\in[3]} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.
Boxed rank condition implies all others, so

 $X_{132} = \{A \in M_3 : \operatorname{rank} A_{[2][2]} \le 1\} = \{(a_{ij})_{i,j \in [3]} : a_{11}a_{22} - a_{12}a_{21} = 0\}.$

- The X_w are closures of two-sided Borel orbits on M_n .
- Torus-equivariant cohomology/K-theory classes of X_w are Schubert/Grothendieck polynomials.

Matrix Schubert varieties

- ▶ Let $\mathbb{K}[M_n] = \mathbb{K}[v_{ij} : i, j \in [n]]$ and $V = (v_{ij})_{i,j \in [n]}$.
- Fulton: the prime ideal *I*(*X_w*) ⊆ K[*M_n*] is generated by the minors det *V_{IJ}* where *I* ⊆ [*i*], *J* ⊆ [*j*] and |*I*| = |*J*| = rank w_{[i][j]} + 1, for all *i*, *j* ∈ [*n*].
- Ex.: $I(X_{132}) = (\det V_{[2][2]}) = (v_{11}v_{22} v_{12}v_{21}).$

Knutson and Miller:

- ► These minors form a Gröbner basis of I(X_w) (with respect to, say, reverse lex order on K[v_{ij}]).
- ► Recall that the initial ideal init I(X_w) is the monomial ideal generated by the leading terms of each f ∈ I(X_w).
- ▶ init I(X_w) is generated by squarefree monomials, and its Stanley-Reisner complex is shellable with facets in bijection with the pipe dreams of w.

Skew-symmetric matrix Schubert varieties

- $\mathcal{I}_n^{\text{FPF}} = \text{fixed-point-free involutions in } S_n$.
- e.g. $\mathcal{I}_4^{\text{FPF}} = \{(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}.$
- $SSM_n =$ skew-symmetric matrices over \mathbb{K} .

Given $z \in \mathcal{I}_n^{\text{FPF}}$ define the skew-symmetric matrix Schubert variety

$$\mathsf{SSX}_z = \mathsf{SSM}_n \cap X_z = \{A \in \mathsf{SSM}_n : \operatorname{rank} A_{[i][j]} \le \operatorname{rank} z_{[i][j]} \forall i, j\}.$$

Example

If
$$z = (1,4)(2,3) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 then $(\operatorname{rank} z_{[i][j]}) = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ and
 $SSX_{(1,4)(2,3)} = \{A \in SSM_4 : \operatorname{rank} A_{[3][1]} \le 0\} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}.$

Skew-symmetric matrix Schubert varieties

Why study SSX_z ?

- $SSX_z = Borel orbit closure on <math>SSM_n$ (hence irreducible)
- Connection to spherical orbits:

 $SSM_n \cap GL_n \simeq \{symplectic bilinear forms on \mathbb{K}^n\} \simeq GL_n / Sp_n,$

and *B*-orbits on $\operatorname{GL}_n / \operatorname{Sp}_n \longleftrightarrow \operatorname{Sp}_n$ -orbits on GL_n / B .

 Ideals *I*(SSX_z) generalize families of Pfaffian ideals studied by De Negri, De Negri–Sbarra, Herzog–Trung, Jonsson–Welker, Raghavan–Upadhyay, ...

What is the prime ideal $I(SSX_z)$? Notation:

► Let
$$\mathcal{U} = \begin{pmatrix} 0 & -u_{21} & -u_{31} & \cdots \\ u_{21} & 0 & -u_{32} & \cdots \\ u_{31} & u_{32} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
.
► $I(SSX_z) \subseteq \mathbb{K}[SSM_n] = \mathbb{K}[u_{ij} : 1 \le j < i \le n].$

Ideals of skew-symmetric matrix Schubert varieties

Problem: minors of skew-symm. $\ensuremath{\mathcal{U}}$ need not generate radical ideals. Example

 $\{A \in \mathsf{SSM}_2 : \mathsf{rank}\, A \le 1\} = \left\{A = \left(\begin{smallmatrix} 0 & -a \\ a & 0 \end{smallmatrix}\right) \in \mathsf{SSM}_2 : \det A = a^2 = 0\right\}.$

Solution: if $A \in SSM_n$ then $det(A) = pf(A)^2$, so use Pfaffians.

Theorem (Marberg–Pawlowski)

Let $z \in \mathcal{I}_n^{\text{FPF}}$. The prime ideal $I(SSX_z)$ is generated by all Pfaffians $pf(\mathcal{U}_{SS})$ where $S \subseteq [i]$ and $|S \cap [j]| > \text{rank } z_{[i][j]}$ for all $j < i \leq n$.

- Linear algebra exercise to show that SSX_z is the zero locus of these Pfaffians.
- Harder to show they generate a prime ideal.

Gröbner bases

- Equip $\mathbb{K}[SSM_n] = \mathbb{K}[u_{ij} : 1 \le j < i \le n]$ with reverse lex order.
- ► Recall that the initial ideal init I(SSX_w) is the monomial ideal generated by the leading terms of each f ∈ I(SSX_w)...
- ► ... and a generating set of *I*(SSX_z) is a <u>Gröbner basis</u> if its leading terms generate the initial ideal init(*I*(SSX_z)).

Example

Consider $SSX_z = \{A \in SSM_6 : \operatorname{rank} A_{[5][3]} \leq 2\}$. Ideal is generated by $pf(\mathcal{U}_{SS})$ where $S \subseteq [5]$ and $|S \cap \{1, 2, 3\}| > 2$:

$$f_1 = pf(\mathcal{U}_{1234,1234}) = u_{32}u_{41} - u_{31}u_{42} + u_{21}u_{43}$$

$$f_2 = pf(\mathcal{U}_{1235,1235}) = u_{32}u_{51} - u_{31}u_{52} + u_{21}u_{53}$$

- ▶ Problem: $u_{41}f_2 u_{51}f_1 = u_{31}u_{42}u_{51} + \cdots$, but $u_{31}u_{42}u_{51} \notin (u_{32}u_{41}, u_{32}u_{51})$, so $\{f_1, f_2\}$ is not a Gröbner basis.
- ► Worse: init $I(X) = (u_{32}u_{41}, u_{32}u_{51}, u_{31}u_{42}u_{51})$, so no set of Pfaffians pf(U_{SS}) can be a Gröbner basis for I(X)!

Initial ideal of $I(SSX_z)$

- ► I(SSX_z) is generated by Pfaffians, but also contains various minors det U_{AB}.
- If $A = \{a_0 < \cdots < a_r\}$ and $B = \{b_0 > \cdots > b_r\}$, lead term of $\pm \det \mathcal{U}_{AB}$ is antidiagonal $u_{a_0b_0} \cdots u_{a_rb_r}$ with transformations $u_{ji} \mapsto u_{ij}$ if j < i and $u_{ii} \mapsto 0$ applied.
- ▶ Define *u*_{AB} as the squarefree radical of this monomial.

Example

•
$$A = \{1, 2, 3\}, B = \{3, 2, 1\} \rightsquigarrow u_{13}u_{22}u_{31} \rightsquigarrow u_{AB} = 0$$

• $A = \{1, 3, 4\}, B = \{4, 2, 1\} \rightsquigarrow u_{14}u_{32}u_{41} \rightsquigarrow u_{41}^2u_{32} \rightsquigarrow u_{AB} = u_{41}u_{32}$

► $A = \{1, 4, 5\}, B = \{3, 2, 1\} \rightsquigarrow u_{13}u_{42}u_{51} \rightsquigarrow u_{AB} = u_{31}u_{42}u_{51}$

Theorem (Marberg–Pawlowski) init($I(SSX_z)$) is generated by all monomials u_{AB} for $A \subseteq [i], B \subseteq [j]$ with $|A| = |B| = \operatorname{rank} z_{[i][j]} + 1$, for all $1 \leq j < i \leq n$.

Theorem (Marberg-Pawlowski)

For $z \in \mathcal{I}_n^{\text{FPF}}$, a Gröbner basis for $I(X_z)$ is given by the polynomials

$$g_{AB} := \mathsf{pf} egin{bmatrix} \mathcal{U}_{BB} & \mathcal{U}_{BA} \ \mathcal{U}_{AB} & 0 \end{bmatrix}$$

running over an explicit collection of sets $A, B \subseteq [n]$ depending on z.

• If
$$A = \emptyset$$
, then $g_{AB} = pf(\mathcal{U}_{BB})$.

If A ∩ B = Ø and |A| = |B|, then g_{AB} = ± det(U_{AB}) (cf. identity of Brill)

Fpf involution pipe dreams

An fpf involution pipe dream for $z = (1,3)(2,4) = 3412 \in \mathcal{I}_4^{\mathrm{FPF}}$:

An fpf involution pipe dream for $z \in S_n$ is...

- a symmetric tiling of [n] imes [n] with tiles + and \checkmark
- where the i^{th} pipe on the left is the $z(i)^{\text{th}}$ pipe on the top...
- and no pair of pipes crosses more than once.

Identify an fpf involution pipe dream with its set of + tiles strictly below the diagonal, e.g. $\{(2,1)\}$ above.

Primary decompositions

Theorem (Marberg–Pawlowski)

For $z \in \mathcal{I}_n^{\text{FPF}}$, init $I(SSX_z) = \bigcap_D (u_{ij} : (i, j) \in D)$ where D runs over the set of fpf involution pipe dreams of z.

That is: the zero locus of init $I(SSX_z)$ is the union of linear subspaces $\{A \in SSM_n : A_{ij} = 0 \text{ for } (i, j) \in D\}$.

Example

z = (1,3)(2,5)(4,6) has two fpf involution pipe dreams:

 $\blacktriangleright I(SSX_{(1,3)(2,5)(4,6)}) = (u_{21}, u_{32}u_{41} - u_{31}u_{42} + u_{43}u_{21})$

► init $I(SSX_{(1,3)(2,5)(4,6)}) = (u_{21}, u_{32}u_{41}) = (u_{21}, u_{32}) \cap (u_{21}, u_{41}).$

Corollaries à la Knutson-Miller:

- ► Torus-equivariant cohomology class of SSX_z is ∑_D ∏_{(i,j)∈D}(x_i + x_j) where D runs over fpf involution pipe dreams of z.
- Similar formula for equivariant K-theory class in terms of nonreduced fpf involution pipe dreams
- Stanley–Reisner complex of init I(SSX_z) has facets in bijection with fpf inv. pipe dreams of z, and is shellable.

Proofs

Induct on Bruhat order restricted to $\mathcal{I}_n^{\text{FPF}}$:

- ▶ $SSX_z \cap \{A \in SSM_n : \operatorname{rank} A_{[p][q]} \leq 0\} = \bigcup_y SSX_y$ as sets.
- True as schemes? i.e. does

$$I(SSX_z) + (u_{pq}) = \bigcap_{y} I(SSX_y)?$$
(1)

- Define J_z as ostensible initial ideal, show using pipe dream combinatorics that J_z + (u_{pq}) = ∩_y J_y.
- Gives enough control to conclude that J_z = init I(SSX_z), that (1) holds, and that I(SSX_z) equals the ideal generated by appropriate Pfaffians.

- This is different from Knutson and Miller's approach, and gives new proofs of many of their results on matrix Schubert varieties.
- Hope: apply this technique to the more difficult setting of <u>symmetric</u> matrix Schubert varieties (related to O_n-orbits on the type A flag variety).