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Part 1: Schubert
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Schubert Polynomials

Schubert Polynomials

The divided differences operators is given by

∂i f :=
f − si f

xi − xi+1
.

Definition

For a permutation w0 = (n, n − 1, . . . , 1) ∈ Sn, we define its Schubert
polynomial as

Sw0 = xn−11 xn−22 · · · x1n−1 ∈ Q[x1, x2, . . .].

For a permutation w ∈ Sn,

∂iSw =

{
Swsi if `(wsi ) = `(w)− 1

0 if `(wsi ) = `(w) + 1.
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Schubert Polynomials

Definition

Given a reduced decomposition h = (h1, h2, . . . , h`(w)). Let C (h) be the
set of all `(w)-tupels (α1, . . . , α`(w)) of positive integers such that

1 ≤ α1 ≤ α2 ≤ . . . ≤ α`(w);

αj ≤ hj ;

αj < αj+1 if hj < hj+1.

Theorem (Billey-Jockusch-Stanley, Fomin-Stanley)

For any permutation w ∈ SN, its Schubert polynomial is given by

Sw =
∑

h∈R(w)

∑
α∈C(h)

xα1xα2 · · · xα`
.
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Schubert Polynomials

RC graphs/ Pipe dream
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Proposition (Fomin-Kirillov)

For any permutation w ∈ SN, its Schubert polynomial is given by

Sw =
∑

g∈RC(w)

m(g).
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Schubert Polynomials

Theorem

There are unique constants cwu,v , u, v ,w ∈ SN such that

SuSv =
∑
w∈SN

cwu,vSw .

Furthermore, cwu,v , u, v ,w ∈ SN are non-negative integers.

Problem

Give a combinatorial interpretation of cwu,v .
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Schubert Polynomials

Operator ∇

∇ :=
∑
i∈N

∂

∂xi

Theorem (Hamaker-Pechenik-Speyer-Weigandt)

For any u ∈ SN,

∇Su =
∑

k∈N: `(sku):=`(u)−1

kSsku.
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Stabilities of Schubert polynomials

Stabilities

Let τ be a shift defined by

τw(i + 1) = w(i) + 1, i ∈ Z,

where w ∈ SZ is a permutation of Z fixing all but finitely many elements.

Stanley symmetric function for w ∈ SN is given by

Fw (x1, x2, . . .) := lim
k→+∞

Sτkw (x1, x2, . . .) ∈ Λ[xi , i ≥ 1].

Back stable polynomial for w ∈ SZ is given by

←−
Sw (xi , i ∈ Z) := lim

k→+∞
Sτkw (x1−k , x2−k , . . .) ∈ Λ[xi , i ≤ 0]⊕Q[xi , i ∈ Z].
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Stabilities of Schubert polynomials Stanley symmetric function

Theorem (Edelman-Greene)

Fw (x1, x2, . . .) = aw ,λsλ(x1, x2, . . .),

where aw ,λ are non-negative.
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Stabilities of Schubert polynomials Back stable polynomials

Theorem (Lam-Lee-Shimozono)

There are unique constants cwu,v , u, v ,w ∈ SZ such that

←−
S u
←−
S v =

∑
w∈SZ

cwu,v
←−
Sw .

Theorem

Given a pair of permutations u, v ∈ SZ, the following holds:(
`(u) + `(v)

`(v)

)
|R(u)||R(v)|=

∑
w∈SZ

cwu,v |R(w)|,

where R(u) is the set of reduced words of u.
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Stabilities of Schubert polynomials Back stable polynomials

1 = + +

1 = + +

Figure: Merge of reduced decompositions,

←−
S (01324)

←−
S (02314) =

←−
S (12304) +

←−
S (02413).
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Stabilities of Schubert polynomials Back stable polynomials

Operator ξ on ←−S

Define ξ as

ξ(f ) :=
∑
γ∈ZZ

≥0

( lim
k→−∞

coef. of xγxk in f ) · xγ = lim
k→−∞

∂f

∂xk
.

For Back stable Schubert polynomials, we have

ξ
←−
S u =

∑
k: `(sku)=`(u)−1

←−
S sku.
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Stabilities of Schubert polynomials Back stable polynomials

Operators ξ and ∇ on ←−S

ξ
←−
S u :=

∑
k: `(sku)=`(u)−1

←−
S sku;

∇←−S u :=
∑

k: `(sku):=`(u)−1

k
←−
S sku.

Proposition (N.)

For any u, v ∈ SZ, we have

ξ(
←−
S u
←−
S v ) = (ξ

←−
S u)
←−
S v +

←−
S u(ξ

←−
S v );

∇(
←−
S u
←−
S v ) = (∇←−S u)

←−
S v +

←−
S u(∇←−S v ).
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Stabilities of Schubert polynomials Back stable polynomials

Theorem (N.)

If an operator ζ satisfies:

ζ
←−
S u =

∑
k: `(sku)=`(u)−1 bu,k

←−
S sku, bu,k ∈ Q;

ζ(
←−
S u
←−
S v ) = (ζ

←−
S u)
←−
S v +

←−
S u(ζ

←−
S v ),

then ζ is a linear combination of ξ and ∇.
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Stabilities of Schubert polynomials Back stable polynomials

Define the vector space QSZ as formal finite sums of permutations with
rational coefficients, i.e.,

QSZ :=

{
k∑

i=1

aiw
(i) : k ∈ N, ai ∈ Q, w (i) ∈ QSZ

}
.
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Stabilities of Schubert polynomials Back stable polynomials

Main theorem (weak form)

A descent of u ∈ SZ is a position k ∈ Z with u(k) > u(k + 1).

Theorem (N.)

Let f : QSZ ×QSZ → QSZ, f (u, v) =
∑

w∈QSZ
bwu,vw be a linear map,

such that

1 bwu,v = 0 if `(w) 6= `(u) + `(v) ;

2 bwu,v = 0 if k is a descent of u and w(a) ≤ k for all a ≤ k;

3 f (id , v) = v;

4 ξf (u, v) = f (ξu, v) + f (u, ξv);

5 ∇f (u, v) = f (∇u, v) + f (u,∇v).

Then bwu,v = cwu,v for all u, v ,w ∈ SZ.
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Stabilities of Schubert polynomials Back stable polynomials

Main theorem (weak form; symmetric)

Theorem (N.)

Let f : QSZ ×QSZ → QSZ, f (u, v) =
∑

w∈QSZ
bwu,vw be a linear map,

such that

1 bwu,v = 0 if `(w) 6= `(u) + `(v) ;

2 bwu,v = 0 if k is a descent of u or v and w(a) ≤ k for all a ≤ k;

3 f (id , id) = id;

4 ξf (u, v) = f (ξu, v) + f (u, ξv);

5 ∇f (u, v) = f (∇u, v) + f (u,∇v).

Then bwu,v = cwu,v for all u, v ,w ∈ SZ.
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Stabilities of Schubert polynomials Back stable polynomials

Main theorem (weak form; positive)

Theorem (N.)

Let f : QSZ ×QSZ → QSZ, f (u, v) =
∑

w∈QSZ
bwu,vw be a linear map,

such that

1 bwu,v = 0 if `(w) 6= `(u) + `(v) ;

2 bwu,v ≥ 0;

3 f (id , id) = id;

4 ξf (u, v) = f (ξu, v) + f (u, ξv);

5 ∇f (u, v) = f (∇u, v) + f (u,∇v).

Then bwu,v = cwu,v for all u, v ,w ∈ SZ.

Remark

My proof of this theorem is different from proofs of the previous two
theorems.
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Stabilities of Schubert polynomials Back stable polynomials

Bosonic operators

Define the sequence of bosonic operators

ρ(1) := ξ;

ρ(k+1) := [ρ(k),∇]
k = ρ(k)·∇−∇·ρ(k)

k .

Proposition

For any k ∈ N and u, v ∈ SZ, we have

ρ(k)(
←−
S u
←−
S v ) = (ρ(k)

←−
S u)
←−
S v +

←−
S u(ρ(k)

←−
S v ).

Theorem (N.)

Operators ρ(k), k ∈ N commute pairwise.
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Stabilities of Schubert polynomials Back stable polynomials

For a partition λ we define operator ξλ as

ξλ :=
∑
µ

χλµ
zµ
ρ(µ1) · · · ρ(µk ).

Proposition

For any u, v ∈ SZ and λ,

ξλ(
←−
S u
←−
S v ) =

∑
µ,ν

cλµ,ν(ξµ
←−
S u)(ξν

←−
S v ),

where cλµ,ν are Littlewood-Richardson coefficients.
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Stabilities of Schubert polynomials Back stable polynomials

Theorem (N.)

For a permutation w and a partition λ, we have

ξλ
←−
Sw =

∑
`(u)=|λ|

`(u−1w)=`(w)−|λ|

aλ,u
←−
S u−1w ,

where aλ,u are coefficients in the expressions of Stanley symmetric
functions in terms of Schur functions.
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Stabilities of Schubert polynomials Back stable polynomials

Main theorem

Theorem (N.)

Let f : QSZ ×QSZ → QSZ, f (u, v) =
∑

w∈QSZ
bwu,vw be a linear map,

such that

1 bwu,v = 0 if `(w) 6= `(u) + `(v) ;

2 bwu,v = 0 if k is a descent of u and w(a) ≤ k for all a ≤ k;

3 f (id , v) = v;

4 for any d ∈ N, ξ(d)f (u, v) =
∑d

i=0 f (ξ(i)u, ξ(d−i)v).

Then bwu,v = cwu,v for all u, v ,w ∈ SZ.

Remark

We can replace conditions (2) and (3) with symmetric or positive
conditions.
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Schur functions From Schubert to Schur

Part 2: Schur

Gleb Nenashev (ICERM, Brown University) Differential operators for sλ and Sw March 24, 2021 24 / 40



Schur functions From Schubert to Schur

A permutation is a Grassmannian permutation if and only if it has at most
one descent.

λ(w) = (wk − k,wk−1 − k + 1,wk−2 − k + 2, . . .).

2
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A reduced decomposition of (2571346) ∈ SZ and the corresponding Young
diagram (4, 3, 1).
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Schur functions From Schubert to Schur

A descent of w ∈ SZ is a position k ∈ Z with w(k) > w(k + 1).
A permutation is a Grassmannian permutation if and only if it has at most
one descent.

λ(w) = (wk − k,wk−1 − k + 1,wk−2 − k + 2, . . .).

Theorem

Sw = sλ(w)(xi , i ≤ k).
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Schur functions additive Group and operations

We denote by Y the set of Young diagrams (partitions), i.e.,
λ = (λ1, . . . , λk) ∈ Y s.t. λ1 ≥ . . . ≥ λk ≥ 0, λi ∈ Z≥0. For example,

(4, 3, 1) =

Define the vector space QY as formal finite sums of Young diagrams with
rational coefficients, i.e.,

QY :=

{
k∑

i=1

aiλ
(i) : k ∈ N, ai ∈ Q, λ(i) ∈ Y

}
.
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Schur functions additive Group and operations

Define two linear “differential” operators on QY. For a Young diagram
λ ∈ Y, we have

ξ(λ) :=
∑

(i ,j)∈N2

λ′=λ\(i ,j)∈Y

λ′;

and
∇(λ) :=

∑
(i ,j)∈N2

λ′=λ\(i ,j)∈Y

(j − i)λ′.
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Schur functions additive Group and operations

ξ


 = + +

∇


 = 3 + 1 − 2
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Schur functions Key Lemma

Key Lemma

For the empty diagram, we have ξ(∅) = ∇(∅) = 0, therefore we associate
the empty diagram with 1.

Lemma (N.)

An element from QY is constant if and only if both operators give zero,
i.e.,

x ∈ Q ⇐⇒ ξ(x) = ∇(x) = 0.
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Schur functions Mutiplication

We say that a map ? : QY2 → QY is a multiplication if

n,m ∈ N and xi ∈ QYi , i ∈ [0, n], yj ∈ QYj , j ∈ [0,m],

(x0 + . . .+ xn) ? (y0 + . . .+ ym) =
∑

0≤i≤n
0≤j≤m

xi ? yj ,

where xi ? yj ∈ QY(i+j);

for a, b ∈ Q, a ? b = ab;

for any x , y ∈ QY, ξ(x ? y) = (ξx) ? y + x ? (ξy);

for any x , y ∈ QY, ∇(x ? y) = (∇x) ? y + x ? (∇y).

Corollary

There is at most one multiplication map.

Gleb Nenashev (ICERM, Brown University) Differential operators for sλ and Sw March 24, 2021 31 / 40



Schur functions Mutiplication

We say that a map ? : QY2 → QY is a multiplication if

n,m ∈ N and xi ∈ QYi , i ∈ [0, n], yj ∈ QYj , j ∈ [0,m],

(x0 + . . .+ xn) ? (y0 + . . .+ ym) =
∑

0≤i≤n
0≤j≤m

xi ? yj ,

where xi ? yj ∈ QY(i+j);

for a, b ∈ Q, a ? b = ab;

for any x , y ∈ QY, ξ(x ? y) = (ξx) ? y + x ? (ξy);

for any x , y ∈ QY, ∇(x ? y) = (∇x) ? y + x ? (∇y).

Corollary

There is at most one multiplication map.

Gleb Nenashev (ICERM, Brown University) Differential operators for sλ and Sw March 24, 2021 31 / 40



Schur functions Mutiplication

Theorem (N.)

There is a unique multiplication map.
Furthermore, this map is linear and satisfies commutative and associative
properties and it is given by

λ ? µ =
∑
ν

cνλ,µν,

where cνλ,µ are Littlewood-Richardson coefficients.
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Schur functions Jacobi-Trudi identity

Jacobi-Trudi identity

h` := . . .︸ ︷︷ ︸
`

Theorem (Jacobi-Trudi identity)

For a partition λ = (λ1 ≥ . . . ≥ λk ≥ 0), we have

sλ = det


hλ1 hλ1+1 hλ1+2 . . . hλ1+k−1
hλ2−1 hλ2 hλ2+1 . . . hλ2+k−2

...
...

...
. . .

...
hλk−k+1 hλk−k+2 hλk−k+3 . . . hλk


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Schur functions Jacobi-Trudi identity

Proof

sλ
?
= detλ := det


hλ1 hλ1+1 hλ1+2 . . . hλ1+k−1
hλ2−1 hλ2 hλ2+1 . . . hλ2+k−2

...
...

...
. . .

...
hλk−k+1 hλk−k+2 hλk−k+3 . . . hλk


We prove it by induction by |λ|= λ1 + . . .+ λk .

Base case: |λ|= 0. We have λ1 = λ2 = . . . = λk = 0, therefore
sλ = 1 = detλ.

Induction step. It is enough to check ξ(sλ − detλ) = ∇(sλ − detλ) = 0.
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Schur functions Jacobi-Trudi identity

Proof; Induction step

sλ
?
= detλ := det


hλ1 hλ1+1 hλ1+2 . . . hλ1+k−1
hλ2−1 hλ2 hλ2+1 . . . hλ2+k−2

...
...

...
. . .

...
hλk−k+1 hλk−k+2 hλk−k+3 . . . hλk


We have

ξ(hλi−i+j) = h(λi−1)−i+j ,

then after combining by rows we get

ξ(detλ) =
∑

λ′=λ\(i ,λi )∈Y

detλ′ =
∑

λ′=λ\(i ,j)∈Y

sλ′ = ξ(sλ).
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Schur functions Jacobi-Trudi identity

Proof; Induction step

sλ
?
= detλ := det


hλ1 hλ1+1 hλ1+2 . . . hλ1+k−1
hλ2−1 hλ2 hλ2+1 . . . hλw+k−2

...
...

...
. . .

...
hλk−k+1 hλk−k+2 hλk−k+3 . . . hλk


We have

∇(hλi−i+j) = (λi − i + j − 1)hλi−i+j−1 =

= (λi − i)h(λi−1)−i+j + (j − 1)hλi−i+(j−1),

then

∇(detλ) =
∑

λ′=λ\(i ,λi )∈Y

(λi − i)detλ′ =
∑

λ′=λ\(i ,j)∈Y

(j − i)sλ′ = ∇(sλ).
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Schur functions Dual Murnaghan-Nakayama rule

ρ(1) := ξ;

ρ(k+1) := [ρ(k),∇]
k = ρ(k)·∇−∇·ρ(k)

k .

Theorem (N.)

ρ(k)λ =
∑

µ: µ⊂λ, |µ|=|λ|−k,
λ\µ is a border strip

(−1)ht(λ\µ)−1sµ.
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Schur functions Dual Murnaghan-Nakayama rule

pk := . . .︸ ︷︷ ︸
k

− . . .︸ ︷︷ ︸
k−1

+ . . .︸ ︷︷ ︸
k−2

− . . .

ρ(k)pk ′ = kδk,k ′ .

Theorem (Murnaghan-Nakayama)

sλpk =
∑

µ: µ⊂λ, |µ|=|λ|+k,
µ\λ is a border strip

(−1)ht(µ\λ)−1sµ.
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Thank You!
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