Differential operators for Schur and Schubert polynomials

Gleb Nenashev

ICERM, Brown University
Geometry and Combinatorics from Root Systems, March 24, 2021

Part 1: Schubert

Schubert Polynomials

The divided differences operators is given by

$$
\partial_{i} f:=\frac{f-s_{i} f}{x_{i}-x_{i+1}} .
$$

Definition

For a permutation $w_{0}=(n, n-1, \ldots, 1) \in S_{n}$, we define its Schubert polynomial as

$$
\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}^{1} \in \mathbb{Q}\left[x_{1}, x_{2}, \ldots\right] .
$$

For a permutation $w \in S_{n}$,

$$
\partial_{i} \mathfrak{S}_{w}= \begin{cases}\mathfrak{S}_{w s_{i}} & \text { if } \ell\left(w s_{i}\right)=\ell(w)-1 \\ 0 & \text { if } \ell\left(w s_{i}\right)=\ell(w)+1\end{cases}
$$

Definition

Given a reduced decomposition $h=\left(h_{1}, h_{2}, \ldots, h_{\ell(w)}\right)$. Let $C(h)$ be the set of all $\ell(w)$-tupels $\left(\alpha_{1}, \ldots, \alpha_{\ell(w)}\right)$ of positive integers such that

- $1 \leq \alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{\ell(w)}$;
- $\alpha_{j} \leq h_{j}$;
- $\alpha_{j}<\alpha_{j+1}$ if $h_{j}<h_{j+1}$.

Theorem (Billey-Jockusch-Stanley, Fomin-Stanley)
For any permutation $w \in S_{\mathbb{N}}$, its Schubert polynomial is given by

$$
\mathfrak{S}_{w}=\sum_{h \in \mathcal{R}(w)} \sum_{\alpha \in C(h)} x_{\alpha_{1}} x_{\alpha_{2}} \cdots x_{\alpha_{\ell}} .
$$

RC graphs/ Pipe dream

degrees of x_{i}
2

2

2
$m=x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}$
0
0

0
0

Proposition (Fomin-Kirillov)
For any permutation $w \in S_{\mathbb{N}}$, its Schubert polynomial is given by

$$
\mathfrak{S}_{w}=\sum_{g \in \mathcal{R C}(w)} m(g)
$$

Theorem
There are unique constants $c_{u, v}^{w}, u, v, w \in S_{\mathbb{N}}$ such that

$$
\mathfrak{S}_{u} \mathfrak{S}_{v}=\sum_{w \in \mathcal{S}_{\mathbb{N}}} c_{u, v}^{w} \mathfrak{S}_{w}
$$

Furthermore, $c_{u, v}^{w}, u, v, w \in S_{\mathbb{N}}$ are non-negative integers.

Problem

Give a combinatorial interpretation of $c_{u, v}^{w}$.

Operator ∇

$$
\nabla:=\sum_{i \in \mathbb{N}} \frac{\partial}{\partial x_{i}}
$$

Theorem (Hamaker-Pechenik-Speyer-Weigandt)
For any $u \in S_{\mathbb{N}}$,

$$
\nabla \mathfrak{S}_{u}=\sum_{k \in \mathbb{N}: \ell\left(s_{k} u\right):=\ell(u)-1} k \mathfrak{S}_{s_{k} u}
$$

Stabilities

Let τ be a shift defined by

$$
\tau w(i+1)=w(i)+1, \quad i \in \mathbb{Z}
$$

where $w \in S_{\mathbb{Z}}$ is a permutation of \mathbb{Z} fixing all but finitely many elements.

Stabilities

Let τ be a shift defined by

$$
\tau w(i+1)=w(i)+1, \quad i \in \mathbb{Z}
$$

where $w \in S_{\mathbb{Z}}$ is a permutation of \mathbb{Z} fixing all but finitely many elements.
Stanley symmetric function for $w \in S_{\mathbb{N}}$ is given by

$$
\mathcal{F}_{w}\left(x_{1}, x_{2}, \ldots\right):=\lim _{k \rightarrow+\infty} \mathfrak{S}_{\tau^{k} w}\left(x_{1}, x_{2}, \ldots\right) \in \Lambda\left[x_{i}, i \geq 1\right]
$$

Stabilities

Let τ be a shift defined by

$$
\tau w(i+1)=w(i)+1, \quad i \in \mathbb{Z}
$$

where $w \in S_{\mathbb{Z}}$ is a permutation of \mathbb{Z} fixing all but finitely many elements.
Stanley symmetric function for $w \in S_{\mathbb{N}}$ is given by

$$
\mathcal{F}_{w}\left(x_{1}, x_{2}, \ldots\right):=\lim _{k \rightarrow+\infty} \mathfrak{S}_{\tau^{k} w}\left(x_{1}, x_{2}, \ldots\right) \in \Lambda\left[x_{i}, i \geq 1\right]
$$

Back stable polynomial for $w \in S_{\mathbb{Z}}$ is given by
$\overleftarrow{\mathfrak{S}}_{w}\left(x_{i}, i \in \mathbb{Z}\right):=\lim _{k \rightarrow+\infty} \mathfrak{S}_{\tau^{k} w}\left(x_{1-k}, x_{2-k}, \ldots\right) \in \Lambda\left[x_{i}, i \leq 0\right] \oplus \mathbb{Q}\left[x_{i}, i \in \mathbb{Z}\right]$

Theorem (Edelman-Greene)

$$
\mathcal{F}_{w}\left(x_{1}, x_{2}, \ldots\right)=a_{w, \lambda} s_{\lambda}\left(x_{1}, x_{2}, \ldots\right),
$$

where $a_{w, \lambda}$ are non-negative.

Theorem (Lam-Lee-Shimozono)
There are unique constants $c_{u, v}^{w}, u, v, w \in S_{\mathbb{Z}}$ such that

$$
\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}=\sum_{w \in S_{\mathbb{Z}}} c_{u, v}^{w} \overleftarrow{\mathfrak{S}}_{w}
$$

Theorem (Lam-Lee-Shimozono)
There are unique constants $c_{u, v}^{w}, u, v, w \in S_{\mathbb{Z}}$ such that

$$
\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}=\sum_{w \in S_{\mathbb{Z}}} c_{u, v}^{w} \overleftarrow{\mathfrak{S}}_{w}
$$

Theorem
Given a pair of permutations $u, v \in S_{\mathbb{Z}}$, the following holds:

$$
\binom{\ell(u)+\ell(v)}{\ell(v)}|\mathcal{R}(u)||\mathcal{R}(v)|=\sum_{w \in S_{\mathbb{Z}}} c_{u, v}^{w}|\mathcal{R}(w)|,
$$

where $\mathcal{R}(u)$ is the set of reduced words of u.

Figure: Merge of reduced decompositions,

$$
\overleftarrow{\mathfrak{S}}_{(01324)} \overleftarrow{\mathfrak{S}}_{(02314)}=\overleftarrow{\mathfrak{S}}_{(12304)}+\overleftarrow{\mathfrak{S}}_{(02413)}
$$

Operator ξ on $\overleftarrow{\mathcal{G}}$

Define ξ as

$$
\xi(f):=\sum_{\gamma \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}}}\left(\lim _{k \rightarrow-\infty} \text { coef. of } x^{\gamma} x_{k} \text { in } f\right) \cdot x^{\gamma}=\lim _{k \rightarrow-\infty} \frac{\partial f}{\partial x_{k}} .
$$

For Back stable Schubert polynomials, we have

$$
\xi \overleftarrow{\mathfrak{S}}_{u}=\sum_{k: \ell\left(s_{k} u\right)=\ell(u)-1} \overleftarrow{\mathfrak{S}}_{s_{k} u}
$$

Operators ξ and ∇ on $\overleftarrow{\mathcal{G}}$

$$
\begin{aligned}
\xi \overleftarrow{\mathfrak{S}}_{u} & :=\sum_{k: \ell\left(s_{k} u\right)=\ell(u)-1} \overleftarrow{\mathfrak{S}}_{s_{k} u} \\
\nabla \overleftarrow{\mathfrak{S}}_{u} & :=\sum_{k: \ell\left(s_{k} u\right):=\ell(u)-1} k \overleftarrow{\mathfrak{S}}_{s_{k} u}
\end{aligned}
$$

Operators ξ and ∇ on $\overleftarrow{\mathcal{s}}$

$$
\begin{aligned}
\xi \overleftarrow{\mathfrak{S}}_{u} & :=\sum_{k: \ell\left(s_{k} u\right)=\ell(u)-1} \overleftarrow{\mathfrak{S}}_{s_{k} u} \\
\nabla \overleftarrow{\mathfrak{S}}_{u} & :=\sum_{k: \ell\left(s_{k} u\right):=\ell(u)-1} k \overleftarrow{\mathfrak{S}}_{s_{k} u}
\end{aligned}
$$

Proposition (N.)
For any $u, v \in S_{\mathbb{Z}}$, we have

$$
\begin{aligned}
\xi\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right) & =\left(\xi \overleftarrow{\mathfrak{S}}_{u}\right) \overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}\left(\xi \overleftarrow{\mathfrak{S}}_{v}\right) \\
\nabla\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right) & =\left(\nabla \overleftarrow{\mathfrak{S}}_{u}\right) \overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}\left(\nabla \overleftarrow{\mathfrak{S}}_{v}\right)
\end{aligned}
$$

Theorem (N.)
If an operator ζ satisfies:

- $\zeta \overleftarrow{\mathfrak{S}}_{u}=\sum_{k: \ell\left(s_{k} u\right)=\ell(u)-1} b_{u, k} \overleftarrow{\mathfrak{S}}_{s_{k} u}, b_{u, k} \in \mathbb{Q}$;
- $\zeta\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right)=\left(\zeta \overleftarrow{\mathfrak{S}}_{u}\right) \overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}\left(\zeta \overleftarrow{\mathfrak{S}}_{v}\right)$ then ζ is a linear combination of ξ and ∇.

Define the vector space $\mathbb{Q} S_{\mathbb{Z}}$ as formal finite sums of permutations with rational coefficients, i.e.,

$$
\mathbb{Q} S_{\mathbb{Z}}:=\left\{\sum_{i=1}^{k} a_{i} w^{(i)}: k \in \mathbb{N}, a_{i} \in \mathbb{Q}, w^{(i)} \in \mathbb{Q} S_{\mathbb{Z}}\right\} .
$$

Main theorem (weak form)

A descent of $u \in S_{\mathbb{Z}}$ is a position $k \in \mathbb{Z}$ with $u(k)>u(k+1)$.
Theorem (N.)
Let $f: \mathbb{Q} S_{\mathbb{Z}} \times \mathbb{Q} S_{\mathbb{Z}} \rightarrow \mathbb{Q} S_{\mathbb{Z}}, f(u, v)=\sum_{w \in \mathbb{Q} S_{\mathbb{Z}}} b_{u, v}^{w} w$ be a linear map, such that
(1) $b_{u, v}^{w}=0$ if $\ell(w) \neq \ell(u)+\ell(v)$;
(2) $b_{u, v}^{w}=0$ if k is a descent of u and $w(a) \leq k$ for all $a \leq k$;
(3) $f(i d, v)=v$;
(1) $\xi f(u, v)=f(\xi u, v)+f(u, \xi v)$;
(0) $\nabla f(u, v)=f(\nabla u, v)+f(u, \nabla v)$.

Then $b_{u, v}^{w}=c_{u, v}^{w}$ for all $u, v, w \in S_{\mathbb{Z}}$.

Main theorem (weak form; symmetric)

Theorem (N.)
Let $f: \mathbb{Q} S_{\mathbb{Z}} \times \mathbb{Q} S_{\mathbb{Z}} \rightarrow \mathbb{Q} S_{\mathbb{Z}}, f(u, v)=\sum_{w \in \mathbb{Q} S_{\mathbb{Z}}} b_{u, v}^{w} w$ be a linear map, such that
(1) $b_{u, v}^{w}=0$ if $\ell(w) \neq \ell(u)+\ell(v)$;
(2) $b_{u, v}^{w}=0$ if k is a descent of u or v and $w(a) \leq k$ for all $a \leq k$;
(3) $f(i d, i d)=i d$;
(9) $\xi f(u, v)=f(\xi u, v)+f(u, \xi v)$;
(5) $\nabla f(u, v)=f(\nabla u, v)+f(u, \nabla v)$.

Then $b_{u, v}^{w}=c_{u, v}^{w}$ for all $u, v, w \in S_{\mathbb{Z}}$.

Main theorem (weak form; positive)

Theorem (N.)
Let $f: \mathbb{Q} S_{\mathbb{Z}} \times \mathbb{Q} S_{\mathbb{Z}} \rightarrow \mathbb{Q} S_{\mathbb{Z}}, f(u, v)=\sum_{w \in \mathbb{Q} S_{\mathbb{Z}}} b_{u, v}^{w} w$ be a linear map, such that
(1) $b_{u, v}^{w}=0$ if $\ell(w) \neq \ell(u)+\ell(v)$;
(2) $b_{u, v}^{w} \geq 0$;
(3) $f(i d, i d)=i d$;
(9) $\xi f(u, v)=f(\xi u, v)+f(u, \xi v)$;
(5) $\nabla f(u, v)=f(\nabla u, v)+f(u, \nabla v)$.

Then $b_{u, v}^{w}=c_{u, v}^{w}$ for all $u, v, w \in S_{\mathbb{Z}}$.

Remark

My proof of this theorem is different from proofs of the previous two theorems.

Bosonic operators

Define the sequence of bosonic operators

- $\rho^{(1)}:=\xi$;
- $\rho^{(k+1)}:=\frac{\left[\rho^{(k)}, \nabla\right]}{k}=\frac{\rho^{(k)} \cdot \nabla-\nabla \cdot \rho^{(k)}}{k}$.

Bosonic operators

Define the sequence of bosonic operators

- $\rho^{(1)}:=\xi$;
- $\rho^{(k+1)}:=\frac{\left[\rho^{(k)}, \nabla\right]}{k}=\frac{\rho^{(k)} \cdot \nabla-\nabla \cdot \rho^{(k)}}{k}$.

Proposition

For any $k \in \mathbb{N}$ and $u, v \in S_{\mathbb{Z}}$, we have

$$
\rho^{(k)}\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right)=\left(\rho^{(k)} \overleftarrow{\mathfrak{S}}_{u}\right) \overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}\left(\rho^{(k)} \overleftarrow{\mathfrak{S}}_{v}\right)
$$

Bosonic operators

Define the sequence of bosonic operators

- $\rho^{(1)}:=\xi$;
- $\rho^{(k+1)}:=\frac{\left[\rho^{(k)}, \nabla\right]}{k}=\frac{\rho^{(k)} \cdot \nabla-\nabla \cdot \rho^{(k)}}{k}$.

Proposition

For any $k \in \mathbb{N}$ and $u, v \in S_{\mathbb{Z}}$, we have

$$
\rho^{(k)}\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right)=\left(\rho^{(k)} \overleftarrow{\mathfrak{S}}_{u}\right) \overleftarrow{\mathfrak{S}}_{v}+\overleftarrow{\mathfrak{S}}_{u}\left(\rho^{(k)} \overleftarrow{\mathfrak{S}}_{v}\right)
$$

Theorem (N.)
Operators $\rho^{(k)}, k \in \mathbb{N}$ commute pairwise.

For a partition λ we define operator ξ^{λ} as

$$
\xi^{\lambda}:=\sum_{\mu} \frac{\chi_{\mu}^{\lambda}}{z_{\mu}} \rho^{\left(\mu_{1}\right)} \cdots \rho^{\left(\mu_{k}\right)}
$$

Proposition

For any $u, v \in S_{\mathbb{Z}}$ and λ,

$$
\xi^{\lambda}\left(\overleftarrow{\mathfrak{S}}_{u} \overleftarrow{\mathfrak{S}}_{v}\right)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda}\left(\xi^{\mu} \overleftarrow{\mathfrak{S}}_{u}\right)\left(\xi^{\nu} \overleftarrow{\mathfrak{S}}_{v}\right)
$$

where $c_{\mu, \nu}^{\lambda}$ are Littlewood-Richardson coefficients.

Theorem (N.)

For a permutation w and a partition λ, we have

$$
\xi^{\lambda} \overleftarrow{\mathfrak{S}}_{w}=\sum_{\substack{\ell(u)=|\lambda| \\ \ell\left(u^{-1} w\right)=\ell(w)-|\lambda|}} a_{\lambda, u} \overleftarrow{\mathfrak{S}}_{u^{-1} w}
$$

where $a_{\lambda, u}$ are coefficients in the expressions of Stanley symmetric functions in terms of Schur functions.

Main theorem

Theorem (N.)
Let $f: \mathbb{Q} S_{\mathbb{Z}} \times \mathbb{Q} S_{\mathbb{Z}} \rightarrow \mathbb{Q} S_{\mathbb{Z}}, f(u, v)=\sum_{w \in \mathbb{Q} S_{\mathbb{Z}}} b_{u, v}^{w} w$ be a linear map, such that
(1) $b_{u, v}^{w}=0$ if $\ell(w) \neq \ell(u)+\ell(v)$;
(2) $b_{u, v}^{w}=0$ if k is a descent of u and $w(a) \leq k$ for all $a \leq k$;
(3) $f(i d, v)=v$;
(9) for any $d \in \mathbb{N}, \xi^{(d)} f(u, v)=\sum_{i=0}^{d} f\left(\xi^{(i)} u, \xi^{(d-i)} v\right)$.

Then $b_{u, v}^{w}=c_{u, v}^{w}$ for all $u, v, w \in S_{\mathbb{Z}}$.

Remark

We can replace conditions (2) and (3) with symmetric or positive conditions.

Main theorem

Theorem (N.)
Let $f: \mathbb{Q} S_{\mathbb{Z}} \times \mathbb{Q} S_{\mathbb{Z}} \rightarrow \mathbb{Q} S_{\mathbb{Z}}, f(u, v)=\sum_{w \in \mathbb{Q} S_{\mathbb{Z}}} b_{u, v}^{w} w$ be a linear map, such that
(1) $b_{u, v}^{w}=0$ if $\ell(w) \neq \ell(u)+\ell(v)$;
(2) $b_{u, v}^{w}=0$ if k is a descent of u and $w(a) \leq k$ for all $a \leq k$;
(3) $f(i d, v)=v$;
(9) for any $d \in \mathbb{N}, \rho^{(d)} f(u, v)=f\left(\rho^{(d)} u, v\right)+f\left(u, \rho^{(d)} v\right)$.

Then $b_{u, v}^{w}=c_{u, v}^{w}$ for all $u, v, w \in S_{\mathbb{Z}}$.

Remark

We can replace conditions (2) and (3) with symmetric or positive conditions.

Part 2: Schur

A permutation is a Grassmannian permutation if and only if it has at most one descent.

$$
\lambda(w)=\left(w_{k}-k, w_{k-1}-k+1, w_{k-2}-k+2, \ldots\right) .
$$

A permutation is a Grassmannian permutation if and only if it has at most one descent.

$$
\lambda(w)=\left(w_{k}-k, w_{k-1}-k+1, w_{k-2}-k+2, \ldots\right) .
$$

A reduced decomposition of $(2571346) \in S_{\mathbb{Z}}$ and the corresponding Young diagram $(4,3,1)$.

A descent of $w \in S_{\mathbb{Z}}$ is a position $k \in Z$ with $w(k)>w(k+1)$.
A permutation is a Grassmannian permutation if and only if it has at most one descent.

$$
\lambda(w)=\left(w_{k}-k, w_{k-1}-k+1, w_{k-2}-k+2, \ldots\right) .
$$

Theorem

$$
\mathfrak{S}_{w}=s_{\lambda(w)}\left(x_{i}, i \leq k\right) .
$$

We denote by \mathcal{Y} the set of Young diagrams (partitions), i.e., $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathcal{Y}$ s.t. $\lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0, \lambda_{i} \in \mathbb{Z}_{\geq 0}$. For example,

We denote by \mathcal{Y} the set of Young diagrams (partitions), i.e., $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathcal{Y}$ s.t. $\lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0, \lambda_{i} \in \mathbb{Z}_{\geq 0}$. For example,

$$
(4,3,1)=
$$

Define the vector space $\mathbb{Q Y}$ as formal finite sums of Young diagrams with rational coefficients, i.e.,

$$
\mathbb{Q} \mathcal{Y}:=\left\{\sum_{i=1}^{k} a_{i} \lambda^{(i)}: k \in \mathbb{N}, a_{i} \in \mathbb{Q}, \lambda^{(i)} \in \mathcal{Y}\right\}
$$

Define two linear "differential" operators on $\mathbb{Q Y}$. For a Young diagram $\lambda \in \mathcal{Y}$, we have

$$
\xi(\lambda):=\sum_{\substack{(i, j) \in \mathbb{N}^{2} \\ \lambda^{\prime}=\lambda \backslash(i, j) \in \mathcal{Y}}} \lambda^{\prime} ;
$$

and

$$
\nabla(\lambda):=\sum_{\substack{(i, j) \in \mathbb{N}^{2} \\ \lambda^{\prime}=\lambda \backslash(i, j) \in \mathcal{Y}}}(j-i) \lambda^{\prime} .
$$

Key Lemma

For the empty diagram, we have $\xi(\emptyset)=\nabla(\emptyset)=0$, therefore we associate the empty diagram with 1.

Key Lemma

For the empty diagram, we have $\xi(\emptyset)=\nabla(\emptyset)=0$, therefore we associate the empty diagram with 1 .

Lemma (N.)
An element from $\mathbb{Q Y}$ is constant if and only if both operators give zero, i.e.,

$$
x \in \mathbb{Q} \Longleftrightarrow \xi(x)=\nabla(x)=0 .
$$

We say that a map $\star: \mathbb{Q} \mathcal{Y}^{2} \rightarrow \mathbb{Q} \mathcal{Y}$ is a multiplication if

- $n, m \in \mathbb{N}$ and $x_{i} \in \mathbb{Q} \mathcal{Y}_{i}, i \in[0, n], y_{j} \in \mathbb{Q} \mathcal{Y}_{j}, j \in[0, m]$,

$$
\left(x_{0}+\ldots+x_{n}\right) \star\left(y_{0}+\ldots+y_{m}\right)=\sum_{\substack{0 \leq i \leq n \\ 0 \leq j \leq m}} x_{i} \star y_{j}
$$

where $x_{i} \star y_{j} \in \mathbb{Q} \mathcal{Y}_{(i+j)}$;

- for $a, b \in \mathbb{Q}, a \star b=a b$;
- for any $x, y \in \mathbb{Q} \mathcal{Y}, \xi(x \star y)=(\xi x) \star y+x \star(\xi y)$;
- for any $x, y \in \mathbb{Q} \mathcal{Y}, \nabla(x \star y)=(\nabla x) \star y+x \star(\nabla y)$.

We say that a map $\star: \mathbb{Q} \mathcal{Y}^{2} \rightarrow \mathbb{Q} \mathcal{Y}$ is a multiplication if

- $n, m \in \mathbb{N}$ and $x_{i} \in \mathbb{Q} \mathcal{Y}_{i}, i \in[0, n], y_{j} \in \mathbb{Q} \mathcal{Y}_{j}, j \in[0, m]$,

$$
\left(x_{0}+\ldots+x_{n}\right) \star\left(y_{0}+\ldots+y_{m}\right)=\sum_{\substack{0 \leq i \leq n \\ 0 \leq j \leq m}} x_{i} \star y_{j}
$$

where $x_{i} \star y_{j} \in \mathbb{Q} \mathcal{Y}_{(i+j)}$;

- for $a, b \in \mathbb{Q}, a \star b=a b$;
- for any $x, y \in \mathbb{Q} \mathcal{Y}, \xi(x \star y)=(\xi x) \star y+x \star(\xi y)$;
- for any $x, y \in \mathbb{Q} \mathcal{Y}, \nabla(x \star y)=(\nabla x) \star y+x \star(\nabla y)$.

Corollary
There is at most one multiplication map.

Theorem (N.)

There is a unique multiplication map.
Furthermore, this map is linear and satisfies commutative and associative properties and it is given by

$$
\lambda \star \mu=\sum_{\nu} c_{\lambda, \mu}^{\nu} \nu
$$

where $c_{\lambda, \mu}^{\nu}$ are Littlewood-Richardson coefficients.

Jacobi-Trudi identity

Theorem (Jacobi-Trudi identity)
For a partition $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0\right)$, we have

$$
s_{\lambda}=\operatorname{det}\left[\begin{array}{ccccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} & \ldots & h_{\lambda_{1}+k-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} & \ldots & h_{\lambda_{2}+k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{k}-k+1} & h_{\lambda_{k}-k+2} & h_{\lambda_{k}-k+3} & \ldots & h_{\lambda_{k}}
\end{array}\right]
$$

Proof

$$
s_{\lambda} \stackrel{?}{=} \operatorname{det}_{\lambda}:=\operatorname{det}\left[\begin{array}{ccccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} & \ldots & h_{\lambda_{1}+k-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} & \ldots & h_{\lambda_{2}+k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{k}-k+1} & h_{\lambda_{k}-k+2} & h_{\lambda_{k}-k+3} & \ldots & h_{\lambda_{k}}
\end{array}\right]
$$

We prove it by induction by $|\lambda|=\lambda_{1}+\ldots+\lambda_{k}$.
Base case: $|\lambda|=0$. We have $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{k}=0$, therefore $s_{\lambda}=1=\operatorname{det}_{\lambda}$.

Induction step. It is enough to check $\xi\left(s_{\lambda}-\operatorname{det}_{\lambda}\right)=\nabla\left(s_{\lambda}-\operatorname{det}_{\lambda}\right)=0$.

Proof; Induction step

$$
s_{\lambda} \stackrel{?}{=} \operatorname{det}_{\lambda}:=\operatorname{det}\left[\begin{array}{ccccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} & \ldots & h_{\lambda_{1}+k-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} & \ldots & h_{\lambda_{2}+k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{k}-k+1} & h_{\lambda_{k}-k+2} & h_{\lambda_{k}-k+3} & \cdots & h_{\lambda_{k}}
\end{array}\right]
$$

We have

$$
\xi\left(h_{\lambda_{i}-i+j}\right)=h_{\left(\lambda_{i}-1\right)-i+j},
$$

then after combining by rows we get

$$
\xi\left(\operatorname{det}_{\lambda}\right)=\sum_{\lambda^{\prime}=\lambda \backslash\left(i, \lambda_{i}\right) \in \mathcal{Y}} \operatorname{det}_{\lambda^{\prime}}=\sum_{\lambda^{\prime}=\lambda \backslash(i, j) \in \mathcal{Y}} s_{\lambda^{\prime}}=\xi\left(s_{\lambda}\right) .
$$

Proof; Induction step

$$
s_{\lambda} \stackrel{?}{=} \operatorname{det}_{\lambda}:=\operatorname{det}\left[\begin{array}{ccccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} & \ldots & h_{\lambda_{1}+k-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} & \ldots & h_{\lambda_{w}+k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{k}-k+1} & h_{\lambda_{k}-k+2} & h_{\lambda_{k}-k+3} & \ldots & h_{\lambda_{k}}
\end{array}\right]
$$

We have

$$
\begin{aligned}
& \nabla\left(h_{\lambda_{i}-i+j}\right)=\left(\lambda_{i}-i+j-1\right) h_{\lambda_{i}-i+j-1}= \\
& =\left(\lambda_{i}-i\right) h_{\left(\lambda_{i}-1\right)-i+j}+(j-1) h_{\lambda_{i}-i+(j-1)},
\end{aligned}
$$

then

$$
\nabla\left(\operatorname{det}_{\lambda}\right)=\sum_{\lambda^{\prime}=\lambda \backslash\left(i, \lambda_{i}\right) \in \mathcal{Y}}\left(\lambda_{i}-i\right) \operatorname{det}_{\lambda^{\prime}}=\sum_{\lambda^{\prime}=\lambda \backslash(i, j) \in \mathcal{Y}}(j-i) s_{\lambda^{\prime}}=\nabla\left(s_{\lambda}\right) .
$$

- $\rho^{(1)}:=\xi$;
- $\rho^{(k+1)}:=\frac{\left[\rho^{(k)}, \nabla\right]}{k}=\frac{\rho^{(k)} \cdot \nabla-\nabla \cdot \rho^{(k)}}{k}$.

Theorem (N.)

$$
\rho^{(k)} \lambda=\sum_{\substack{\mu: \mu \subset \lambda,|\mu|=|\lambda|-k, \lambda \backslash \mu \text { is a border strip }}}(-1)^{h t(\lambda \backslash \mu)-1} s_{\mu} .
$$

Theorem (Murnaghan-Nakayama)

$$
s_{\lambda} p_{k}=\sum_{\substack{\mu: \mu \subset \lambda,|\mu|=|\lambda|+k \\ \mu \backslash \lambda \text { is a border strip }}}(-1)^{h t(\mu \backslash \lambda)-1} s_{\mu}
$$

Thank You!

