Session 2
 Wednesday, March 24

10:45-10:55	Theo Douvropoulos, University of Massachusetts, Amherst
10:55-11:05	Brian Hwang, Cornell University
11:05-11:15	Weihong Xu, Rutgers University
11:15-11:25	Anastasia Chavez, UC Davis
$11: 25-11: 35$	Maiko Serizawa, University of Ottawa

Volumes of Root Zonotopes via the W-Laplacian arxiv: 2012.04519

For the "Geometry and Combinatorics from Root Systems,"
Workshop as part of the Combinatorial Algebraic Geometry semester QICERM
by Thee Dourropoulos (Mas Amherst' joint with Guillaume Chapay

The unimodular root zonotope $Z_{A_{n-1}^{+}}$and its volume.
The root zonotope $Z_{\phi^{+}}$is the Minsowssi sum of the positive roots of the root system φ.

The root zonotope $Z_{A_{n-1}^{+}}$is uninodular and its Cnormalized volume is given as $\quad V_{0} \left\lvert\,\left(Z_{A_{n-1}^{+1}}\right)=n^{n-2} \quad\binom{$ it has a d tiling }{ indexed by treas }\right.

ϕ	A_{n-1}	B_{2}	B_{3}	B_{4}	D_{3}	D_{4}	F_{4}	\ldots
$V_{0}\left(Z_{\phi^{+}}\right)$	n^{n-2}	7	3.29	1553	2^{4}	2.3 .53	2.3 .31 .67	\ldots

? ? ? ? ? 2? ? ?
arxiv: 2012.04519

Why not a prochict formula for all Weyl groups?
-5 The zonotopes $Z_{\varphi^{+}}$are not unimodular

- Their tiles are less nice than trees.
[Shephard-McMullen Formula]
volume of parallelepiped
formed by \vec{p}^{\prime}

$$
V_{0} \mid\left(z_{\varphi^{+}}\right)=\sum_{\vec{r}} \widetilde{\operatorname{det}}_{\operatorname{det}(\vec{r}) \mid}^{\substack{\text { summing } \\ \text { c-bases of of } \\ z_{\Phi^{*}}}}
$$

$$
V_{0} \mid\left(Z_{B_{2}}\right)=7
$$

[Baumeister-Weganer] The reflections associated to \vec{r} generate the Well group W if and only if \vec{r} and \vec{P} are \mathbb{Z}-bases of Q and \hat{Q}

The W-Laplacian and its determinant
W is a Weyl group acting on $V=\mathbb{R}^{n}$. It has set of reflections R, root system ϕ, and reflection representation ρ_{v}. Its W-Laplacian L_{w} is: $D_{e f_{n}}$ 1: $G L(v) \ni L_{w}:=\sum_{\tau \in R}\left(I_{n}-\rho_{v}(\tau)\right) \quad D_{\text {the }} n \times n$ identity matrix $\left.2: L_{w}(v):=\sum_{6 \in \Phi^{+}} L v, \hat{6}\right\rangle \cdot 6$

by Defu 1 and W-invariance: $\quad \operatorname{det}\left(L_{w}\right)=h^{n} \quad$ (his the coxeter \# of W) by Def 2 and as a sum of rani- 1 operators:

$$
\operatorname{det}\left(L_{w}\right)=\sum_{\vec{r}} \operatorname{det}\left(\left\langle r_{i}, \hat{r}_{j}\right\rangle\right)=\sum_{W^{\prime} \leq \text { max }}\left|R G S\left(w^{\prime}\right)\right| \cdot I\left(w^{\prime}\right)
$$

Volumes $V_{0} \mid\left(z_{\phi t}\right)$ in terms of Coxeter \#s and reflection subgroups [after Shephard-McMullen] $V_{0}\left|\left(Z_{\phi^{+}}\right\rangle=\sum_{W^{\prime} L_{\text {max }} W}\right| R G S(W)\left|\cdot V_{0}\right|\left(Q^{\prime}\right)$
$\left[\begin{array}{l}\text { after the double calk- } \\ \text { lotion of the } W \text {-Laplacian }\end{array}\right]$
$\left|R G S\left(W^{\prime}\right)\right|=\frac{1}{I\left(W^{\prime}\right)} \cdot \sum_{W^{\prime \prime} \leq_{\text {max }} W^{\prime}} \mu\left(W^{\prime} W^{\prime \prime}\right) \cdot \prod_{\text {Coxeter } \# \text { \#s of } W^{\prime \prime}}^{n} h_{i}\left(W^{\prime \prime}\right)$
Mbbius function for lattice
Corollary: of max-rous reflection subgraps

$$
V_{0} \left\lvert\,\left(Z_{\phi^{+}}\right)=\sum_{W^{\prime \prime} \leqslant w}\left(\prod_{i=1}^{n} h_{i}\left(w^{\prime \prime}\right)\right) \cdot \sum_{w^{\prime \prime} \leqslant w^{\prime} \leqslant w^{\prime}} \mu\left(w^{\prime}, w^{\prime \prime}\right) \cdot \frac{1}{V_{0} \mid\left(\widehat{Q}^{\prime}\right)}\right.
$$

Corollary: The interval $\left[\omega^{\prime \prime}, \omega\right]$ is replaced by $\left[\omega^{\prime \prime}\right.$, parab. closure $\left.\left(w^{\prime \prime}\right)\right]$ (Ehrhart polynomial)

Summary / Advertisement
arxiv: 2012.04519

Existing approaches

- Postriisow $V_{0} \mid\left(z_{\phi^{+}}\right)=\sum_{w \in w} \cdots$ all group elements
- De Concini \quad Vol $\left(z_{\varphi^{+}}\right)=\sum_{f \in F}$
- Process $\Phi^{+} \sum_{f \in \mathcal{F}} \cdots n$ n Flags on the simple.

AThe above generalize to arbitrary permutohehra.

- Ardila-Bear - combinatorics of trees

McWhirter generating functions For Ehrhart polynomials - only Classical types ($A_{n}, B_{n}, C_{n}, D_{n}$)

Our approach

- Debatably more explicit $\operatorname{Vol}\left(z_{\varphi^{+}}\right)=\sum_{W^{\prime} \leq \leq_{\text {wax }}} \cdots$
- Reveals connection with a general version of W-trees lie reflection gen'g sets 5
- The W-Laplacian plays a "higher-arithmetic" role:

$$
\operatorname{det}\left(L_{w}\right)=\sum_{\vec{r}}|\operatorname{det}(\vec{r}) \cdot \operatorname{det}(\overrightarrow{\vec{r}})|
$$

Effective point-counting for polygons in flag varieties

Brian Hwang

ICERM Workshop: Geometry and Combinatorics from Root Systems

March 24, 2021

Slides available at: http://brianhwang.com/slides/2021_icerm.pdf

An innocent observation...

Obs 1. A lot of the "big" (e.g. affine, open) spaces that arise when studying flag varieties seem very similar.

Some of these are known to have special features. Two extremal cases:

- Open Richardson varieties $R_{u}^{v}=X_{u} \cap X^{v}$ (where X_{u} and X^{v} are Schubert and opposite Schubert varieties) have an explicit combinatorial decomposition into a disjoint union of finitely many components of the form $\left(\mathbf{G}_{m}\right)^{a} \times\left(\mathbf{A}^{1}\right)^{b}$ for varying (a, b).
- Double Bruhat cells $G^{u, v}=B_{+} \bar{u} B_{+} \cap B_{-} \bar{v} B_{-}$are cluster varieties and so admit a combinatorial decomposition into a highly nondisjoint union of possibly infinitely many components of the form $\left(\mathbf{G}_{m}\right)^{d}$ for a fixed d.
These correspond to two ways in which we can "doubly slice up" a group:

$$
G=\bigsqcup_{u \in W} \bigsqcup_{v \in W} R_{u}^{v}=\bigsqcup_{u \in W} \bigsqcup_{v \in W} G^{u, v},
$$

but are quite different: e.g. $R^{u, v} \neq \varnothing$ if and only if $u \leq v$ but $G^{u, v}$ is always nonempty.

Obs 2. Many of these spaces, including the examples above, are polygons in flag varieties, T-fibrations over these, or unions/intersections thereof.

A 'Quantum Equals Classical' Theorem for n-pointed (K-Theoretic) Gromov-Witten Invariants of Lines in Homogeneous Spaces

Weihong Xu
(Joint with A. Buch, L. Chen, A. Gibney, L. Heller, E. Kalashnikov, and H. Larson)

March 2021

Set-up

- Fix $T \subseteq B \subseteq P \subseteq G, X=G / P$ flag variety
- $0 \leq \beta \in H_{2}(X)$
- $e v_{i}: \bar{M}_{0, n}(X, \beta) \rightarrow X$
- Schubert varieties $\Gamma_{1}, \cdots, \Gamma_{n} \subseteq X$
$\mathcal{O}_{1}, \cdots, \mathcal{O}_{n} \in K^{T}(X)$ corresponding T-equivariant Schubert classes
- T-equivariant K -theoretic Gromov-Witten invariant of X

$$
I_{\beta}^{T}\left(\mathcal{O}_{1}, \cdots, \mathcal{O}_{n}\right):=\chi^{T}\left(e v_{1}^{*} \mathcal{O}_{1} \cdots e v_{n}^{*} \mathcal{O}_{n}\right) \in K^{T}(p t)
$$

Background

- 3-pointed 'Quantum=Classical' for
- Cohomological GW-invariants:
- Buch, Kresch, Tamvakis, '03, '09: (isotropic) Grassmannians
- Chaput, Manivel, Perrin, '08: cominuscule + type-uniform
- Leung, Li, '11: some invariants for G / P
- (Equivariant) K-theoretic GW-invariants:
- Buch, Mihalcea, '11; Chaput, Perrin, '11: cominuscule G/P
- Mihalcea, Li, '13: most $G / P, \beta$ class of a line/Schubert curve
- Line case is particularly nice:

For most choices ${ }^{1}$ of G, P, and $\beta=\left[X_{s_{\alpha}}\right]\left(\alpha \in \Delta \backslash \Delta_{P}\right)$

${ }^{1}$ We require that either α is long or the connected component containing α of $\Delta_{P} \cup\{\alpha\}$ in the Dynkin diagram of G is simply laced. This condition ensures that lines in the projective embedding of X given by $L_{\omega_{\alpha}}$ are exactly translates of the Schubert curve $X_{s_{\alpha}}$.

n-pointed 'Quantum $=$ Classical' for Lines

Theorem [Buch, Chen, Gibney, X] For most choices ${ }^{2}$ of G, P, and β the class of a Schubert curve, the (T-equivariant, n-pointed, genus 0) KGW invariant

$$
I_{\beta}^{T}\left(\mathcal{O}_{1}, \cdots, \mathcal{O}_{n}\right)=\chi_{G / Q}^{T}\left(q_{*} p^{*} \mathcal{O}_{1} \cdots q_{*} p^{*} \mathcal{O}_{n}\right)
$$

Corollary [direct proof by C, G, H, K, L, X] The GW Invariant

$$
\int_{\bar{M}_{0, n}(X, \beta)} e v_{1}^{*}\left[\Gamma_{1}\right] \cdots e v_{n}^{*}\left[\Gamma_{n}\right]
$$

$=\int_{G / Q}\left[q\left(p^{-1}\left(\Gamma_{1}\right)\right)\right] \cdots\left[q\left(p^{-1}\left(\Gamma_{n}\right)\right)\right]$
$=\#\left\{\beta\right.$-line in X meeting $\left.g_{1} \Gamma_{1}, \cdots, g_{n} \Gamma_{n}\right\}$ for $g_{1}, \cdots, g_{n} \in G$ general
${ }^{2}$ The same condition as on the previous page.

A Good Old Example

$F I(1,2 ; 4) \xrightarrow{p} \mathbb{P}^{3}$

$\operatorname{Gr}(2,4)$

Line $\Gamma \subset \mathbb{P}^{3}$
$q\left(p^{-1}(\Gamma)\right)$ Schubert divisor \square
$\square^{4}=2 \cdot \square=2 \cdot[\mathrm{pt}]$

$$
=\downarrow
$$

$$
\begin{aligned}
& \bar{M}_{0,1}\left(\mathbb{P}^{3}, 1\right) \xrightarrow{e v} \mathbb{P}^{3} \\
& \quad \downarrow \\
& \bar{M}_{0,0}\left(\mathbb{P}^{3}, 1\right)
\end{aligned}
$$

$4 \cdot \operatorname{codim}(\Gamma)=\operatorname{dim}\left(\bar{M}_{0,4}\left(\mathbb{P}^{3}, 1\right)\right)$
The Gromov-Witten invariant
$\int_{\bar{M}_{0,4}\left(\mathbb{P}^{3}, 1\right)} e v_{1}^{*}[\Gamma] \cdots e v_{4}^{*}[\Gamma]=2$

Polygons in flag varieties?

Def. A polygon in a flag variety is a tuple of flags $\left(B_{1}, \ldots, B_{m}\right) \in\left(G / B_{+}\right)^{m}$ together with a tuple of elements $\left(w_{1}, \ldots, w_{m}\right) \in W$ representing "distances" between adjacent flags: $B_{1} \xrightarrow{w_{1}} B_{2}, B_{2} \xrightarrow{w_{2}} B_{3}, \ldots, B_{m} \xrightarrow{w_{m}} B_{1}$.
e.g. For $G=S L_{3}, P G L_{3}, G L_{3} ; W \cong\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{3}=e\right\rangle \cong S_{3}$

Why nice? These "distances" w_{i} are sometimes called the relative position $B_{i} \xrightarrow{w_{i}} B_{i+1}$ of two flags. The distances on G / B_{+}and $B_{-} \backslash G$ together with a "codistance" between them form a twin building; it says that a flag variety can essentially be viewed as a compact sphere.

Spaces like double Bruhat cells are torus fibrations over polygons in flag varieties, which we parameterize by choosing the addition datum of "compatible" sections of $G / B_{+} \rightarrow G / U_{+}$for each flag B_{i}.

Key Feature of Polygons in Flag Varieties

These polygons admit triangulations into easy-exit triangles, that is, 3-sided polygons on flag varieties where at least one edge is a simple reflection. Such triangles are isomorphic to $\mathbf{A}^{1}, \mathbf{G}_{m},\{*\}$, or \varnothing, depending on the labels on the other sides and yield iterated \mathbf{A}^{1} - or \mathbf{G}_{m}-fibrations.
e.g. Type A_{2}, distances $\left(s_{1}, s_{2}, s_{1}, s_{1}, s_{2}, s_{1}, w_{0}\right)$

Upshot. Some of these "easy-exit" triangulations recover decompositions of these spaces.
e.g. Type A, distances $\left(s_{i}, w_{0}, s_{i}, w_{0}\right)$

This space is $\mathbf{A}^{2} \backslash\{x y-1\}$. It has $(q-1)^{2}+q$ points over \mathbf{F}_{q}.

Application: Effective Point Counting for $R_{e}^{w_{0}}$ for $G=S L_{4}$

Step 1. Set $Q=\mathbf{w}+\mathbf{v}$ where \mathbf{w} and \mathbf{v} are arbitrary reduced expressions for w_{0}, e.g. $Q=\left(s_{1}, s_{2}, s_{1}, s_{3}, s_{2}, s_{1} ; s_{1}, s_{2}, s_{1}, s_{3}, s_{2}, s_{1}\right)$

Step 2. Fix a triangulation of the $(|Q|+1)$-gon and run over the possible W-valued distances on the internal edges:

Rem. The valid distances on the internal diagonals for this "shell" triangulation correspond to distinguished subexpressions for e in w (in sense of Deodhar):

$$
121321, \underline{1} 2 \underline{1} 321,12 \underline{1} 32 \underline{1}, 1 \underline{2} 13 \underline{2} 1, \underline{12} 1321 .
$$

Only these yield an easy-exit triangulation without a \varnothing-triangle.
Step 3. Count points on each component:

$$
\text { \# } \operatorname{Brick}^{Q}\left(\mathbf{F}_{q}\right)=(q-1)^{6}+3\left[q(q-1)^{4}\right]+q_{\text {http: } / / \text { brianhwang.com/slides/2021_icerm.pdf }}^{2}(q-1)^{2}
$$

The main result and looking ahead

Thm. (H.) An effective, embarrassingly parallel, deterministic point-counting algorithm-of complexity $O(n \log n)$ where n is the sum of (the minimum of lengths/co-lengths) of the sides-for polygons in flag varieties over finite fields, where G is a minimal Kac-Moody group.
BIG PICTURE: What properties should a polygon in a flag variety have? At the very least:

1. A "Deodhar-style" decomposition into a disjoint union of $\left(\mathbf{G}_{m}\right)^{a} \times\left(\mathbf{A}^{1}\right)^{b}$ components, classified by distinguished subexpressions. (Biatnicki-Birula decomposition $+\epsilon$)
2. A natural ("almost sncd") compactification and a set of canonical coordinates that yield a group-theoretic parameterization and moduli-theoretic interpretation of these spaces. (Log Calabi-Yau property + monodromy pairing; alternatively, canonical bases)
Prediction: $\mathbf{1 + 2}=\mathbf{3}$. (Conj.) The coordinate ring of a polygon U in a flag variety is a cluster algebra. Furthermore, we expect that $(U, \bar{U} \backslash U)$ is a log Calabi-Yau pair with maximal boundary, with a natural dual with respect to the group G^{\vee}.
Thm. (H.-Knutson) Open brick manifolds-polygons where all but one of the "distances" are simple reflections, and G is simply-connected and semisimple-are cluster varieties. In particular, open Richardson varieties for such G.

Matroids, Positroids, and Combinatorial Characterizations

Anastasia Chavez

- Native Californian, living in Berkeley with my partner, two kids and several quirky pets

- Finishing as an NSF Postdoc and Krener Assistant Professor, UC Davis, mentored by Dr. Jesus De Loera
- Beginning a tenure-track position at Saint Mary's College of California this summer
- Recently enjoying learning to play the guitar, taking improv
- classes, and identifying the birds at our bird feeder

Matroids

Definition (Whitney 1935)

A matroid is a pair $M=([n], \mathcal{B})$ where $B \in \mathcal{B}$ is a basis and $B \subset[n]$ such that

- $\mathcal{B} \neq \emptyset$,
- For all $A, B \in \mathcal{B}, a \in A \backslash B \Rightarrow b \in B \backslash A$ s.t. $A-a+b \in \mathcal{B}$.

bases:

a	b	c	d	e	f
0	1	1	0	0	0
0	0	1	1	2	0
0	0	0	0	0	1

max. lin. ind. cols:

$$
\mathcal{B}=\{b c f, b d f, b e f, c d f, c e f\}
$$

Positroids

- Matroids appear naturally in linear algebra: each $k \times n$ full rank matrix over a field \mathbf{F} gives rise to a matroid on $[n]$ of rank k. Matroids arising in this way are called \mathbf{F}-representable.

Definition (Postnikov 2005)

A rank k matroid M on $[n]$ is a positroid if it is \mathbb{R}-representable associated with a totally non-negative full-rank real- $(k \times n)$ matrix.

Example
The matroid $M=([5], \mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ is a positroid:

$$
A_{M}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right)
$$

The matroid $M=([4],\{12,14,23,34\})$ is not. (why?)

Combinatorics of positroids

Theorem (Postnikov 2006)

A positroid can be represented by a unique: Grassmann necklace, decorated permutation, Le-diagram, and plabic graph.

Define i - Gale order: For $S=\left\{s_{1}<_{i} \cdots<_{i} s_{k}\right\}$, $T=\left\{t_{1}<_{i} \cdots<_{i} t_{k}\right\}$ subsets of $[n], S<_{i} T$ iff $s_{j}<_{i} t_{j}$ for all $j \in[d]$.

Example

- $M(A): \mathcal{B}=\{13,14,15,34,35,45\}$
- Grassmann necklace (list of i-Gale-least bases):

$$
\mathcal{I}_{M}:(13,34,34,45,51)
$$

- Decorated permutation (encodes swaps between necklace elements):

$$
\sigma_{M}: 4 \underline{2} 513
$$

Combinatorial Characterizations

Unit interval positroids:

Positroids arising from unit interval orders (a poset) in relation with Dyck paths on associated matrices.

Flag positroids and poset of positroid quotients:
Characterization of positroid quotients by applying the Freeze-Shift-Decorate function on decorated permutations.

Joint work with Carolina Benedetti and Daniel Tamayo

Twisted Quadratic Foldings of Root Systems and Combinatorial Schubert Calculus by Maiko Serizawa

Moment Graph \mathcal{O}
W : a finite Coxeter group (\Leftrightarrow a finite real reflection group)
Idea. A directed labelled graph on $\left(W, \frac{\leq}{\uparrow}\right)$
e.g $\left.W=\mathbb{S}_{3}=\left\langle\left(\begin{array}{ll}(12)\end{array}\right), \underset{\substack{11 \\ s_{1}}}{(23} 3\right)\right\rangle$
 α_{i}... simple root corresponding to S_{i}

Structure Algebra $Z(\mathcal{g})$
Idea. A certain module structure over g

$$
\text { cut out by relations } \mathbb{Z (g)} \subset \underset{\omega \in W}{\oplus} S
$$ associated with the edges of g

Fact (7) $Z(G)$ is a FREE S-module!
ω Schubert classes
(2) $\operatorname{rank} Z(y)=|W|$
(3) $Z(y)$ is an S-algebra under the pointwise multiplication.

Folding and Induced Map

$$
W=\mathbb{S}_{5}
$$

Embedding of Coxter groups

$$
W_{\tau} \stackrel{\varepsilon}{\longleftrightarrow} W
$$

Induced map

$$
\begin{gathered}
z(g) \stackrel{\varepsilon^{*}}{\longrightarrow} Z\left(g_{\tau}\right) \\
\underset{\sim}{U} \underset{\text { Schubert classes }}{\left\{\sigma^{(\omega)} \mid \omega \in W\right\}}
\end{gathered}
$$

Q. Let $u \in W_{\tau} . \quad\left(\cdots \sigma_{\tau}^{(u)}\right)$ Is there $w \in W$ suck that $\varepsilon^{*}\left(\sigma^{(\omega)}\right)=c \cdot \sigma_{\tau}^{(u)}$ for some nonzero $c \in \mathbb{R}$?

Main Result
Theorem (S.2020)
Let $k \in W_{\tau}$ and $w \in W$. Then
$\varepsilon^{*}\left(\sigma^{(w)}\right)=c \cdot \sigma_{\tau}^{(u)}$ for some $c \in \mathbb{R}^{\times}$
$\Leftrightarrow \quad w \in W^{F}$ and $u=\bar{\varphi}(w)$
egg.

$$
\begin{aligned}
& \bar{\varphi}: W^{F} \longrightarrow W_{T} \\
& e \longmapsto e \\
& w=s_{i_{1}} \cdots s_{i_{\ell}} \longmapsto \varphi\left(s_{i_{1}}\right) \cdots \varphi\left(s_{i_{\ell}}\right) \\
& \tau
\end{aligned}
$$

any reduced expression!

Example

By Theorem, for these u and w, we have $\varepsilon^{*}\left(\sigma^{(w)}\right)=c \cdot \sigma_{\tau}^{(u)}$

