Session 2

Wednesday, March 24

10:45 -10:55	Theo Douvropoulos, University of Massachusetts, Amherst
10:55 - 11:05	Brian Hwang, Cornell University
11:05 - 11:15	Weihong Xu, Rutgers University
11:15 - 11:25	Anastasia Chavez, UC Davis
11:25 - 11:35	Maiko Serizawa, University of Ottawa

Volumes of Root Zonotopes via the W-Laplacian arxiv: 2012.04519 For the "Geometry and Combinatorics From Root Systems ,, Workshop as part of the Combinatorial Algebraic Geometry semester @ICERM by Theo Dourropoulos (UMass Amberst) joint with Guillaume Chapuy

The root zo the Minkow positive root	unimodu motope uski saw uski saw	lar ro Z_{p+} is 0F e root	s the system	notope a P.	Z _{A,+}	and its ee. ² 3	Volume.	(2 3 1 3 2
The root zou volume is	otope i given	2 An-, i as	s unin VolC	nodular Z _{Au} s=	and n ⁿ⁻²	its Cnor (it	malizeds has a tiling indexed by trees	l J
φ.	A _{n-1}	Bı	Β3	B ₄	D ₃	D4	Fy	· · · · · ·
Vol (Zo+)	n ⁿ⁻²	7	3.29	1553	24	2.3.53	2.3.31.67	
	2	22	222	222	· · · · · ·	· · · · · · · · ·	arxiv: 2012.	0451

Why not a product formula	For all Weyl groups	$\frac{2}{2}$
.SThe zonotopes Zp+ are not	unimodular	
.) Their tiles are less nice t	han trees.	$\langle 2 \rangle$
[Shephard-McMullen Formula] Vol (Zp+) = 2	Volume of Parallelopiped formed by F ² [det(F ²)]	$e_{2}-e_{1}$ e_{2} $e_{1}+e_{2}$ e_{1}
· · · · · · · · · · · · · · · · · · ·	C-bases of Za+	$V_0 (z_{B_1}) = f$
(Baumeister-Wegener) The reflect group W if and only if F and	ctions associated to F° o d Pare Z-bases OF	R and R and R
(Corollary) Vol(Zpt) = Z N'a max-rank reflection subaroup	RGS(W'SI. Vol (Q') # of reflection generating sets of W	volume of Yoot lattice Q' of W'

The W-Laplacian and its determinant arxiv: 2012.04519 Wis a Weyl group acting on V=1Rⁿ. It has set of reflections R, root system P, and reflection representation pv. Its W-Laplacian Lw is: Defin 1: GL(V) \exists Lw:= $\sum_{t \in R} (I_n - \rho_v(t))$ Defin 2: Lw(v):= $\sum_{t \in R} L_v (\delta v) = \sum_{t \in R} L_v (\delta v$ (h is the loxeter # of W) by DeFn1 and W-invariance: det(Lw) = h by Defn2 and as a sum of rank-1 operators: $det(L_W) = \sum_{\vec{r}} det(Lr_i, \hat{r}_i) = \sum_{\substack{W' \leq W \\ index}} |RGS(W)| \cdot I(W')$

Volumes Vol (Zp+) in	terms of Coxeter #s and reflection su	lbgroups
(after Shephard-McMullen) Vol(2,)= Z RGS(WS) · Vol(W' = w + of reflection generation	'Q'S og sæts of W
after the double calcu- lation of the W-Laplacian	$ RGS(w') = \frac{1}{I(w')} \cdot \sum_{w'' \leq max} w'' \cdot \frac{w''}{1} \cdot \frac{w''}{1}$	hi (w")
Corollary:	Möbius Function for lattice (OF max-ranks reflection subgroups	x #s of W
$V_{ol}(Z_{\phi^{\dagger}}) = \sum_{W' \leq W}$	$\left(\frac{m}{11}h(w'')\right) \cdot \sum_{w'' \leq w' \leq w} \mu(w',w'') \cdot \frac{1}{V_{01}}$	<u>â</u> ⁄)
Corollary: The interval (Ehrhart polynomial)	[w",w] is replaced by [w", parab. closure (w"] arxiv: 2012.04519	

· · · · · · · · · · · · · ·	Summary / Advertis	sement arxiv: 2012.04519
Existing a	pproaches	Our approach
· Postnikov Vol	$(2_{0+}) = \sum_{n=1}^{\infty} (1 - 1)^{n}$	· Debatably more explicit
• De Concini - Procesi	wew mall group elements (2,) = 5 F6 F m n! Flags on the	$V_{0}(Z_{q^{*}}) = \sum_{w' \leq u_{q}} W$ $\cdot Reveals (ausertia)$
A The above ge arbitrary permu	emeralize to simples.	with a general version of W-trees (i.e. reflection
• Ardila-Beck- McWhirter	· combinatorics of trees · generating functions for Ehrhart polynomials	• The W-Laplacian plays a "higher-arithmetic" role:
· ·	• only Classical types (An, Bn, Cn, Dn)	$det(L_{w}) = \sum_{\vec{r}} det(\vec{r}) \cdot det(\vec{r}) $

Effective point-counting for polygons in flag varieties

Brian Hwang

ICERM Workshop: Geometry and Combinatorics from Root Systems

March 24, 2021

Slides available at: http://brianhwang.com/slides/2021_icerm.pdf

An innocent observation...

Obs 1. A lot of the "big" (e.g. affine, open) spaces that arise when studying flag varieties seem very similar.

Some of these are known to have special features. Two extremal cases:

- ▶ Open Richardson varieties R^v_u = X_u ∩ X^v (where X_u and X^v are Schubert and opposite Schubert varieties) have an explicit combinatorial decomposition into a *disjoint* union of *finitely many* components of the form (**G**_m)^a × (**A**¹)^b for varying (a, b).
- Double Bruhat cells G^{u,v} = B₊ uB₊ ∩ B₋ vB₋ are cluster varieties and so admit a combinatorial decomposition into a *highly nondisjoint* union of *possibly infinitely many* components of the form (G_m)^d for a *fixed d*.

These correspond to two ways in which we can "doubly slice up" a group:

$$G = \bigsqcup_{u \in W} \bigsqcup_{v \in W} R_u^v = \bigsqcup_{u \in W} \bigsqcup_{v \in W} G^{u,v},$$

but are quite different: e.g. $R^{u,v} \neq \emptyset$ if and only if $u \leq v$ but $G^{u,v}$ is always nonempty.

Obs 2. Many of these spaces, including the examples above, are *polygons in flag varieties*, *T*-fibrations over these, or unions/intersections thereof.

A 'Quantum Equals Classical' Theorem for n-pointed (K-theoretic) Gromov-Witten Invariants of Lines in Homogeneous Spaces

Weihong Xu (Joint with A. Buch, L. Chen, A. Gibney, L. Heller, E. Kalashnikov, and H. Larson)

March 2021

- Fix $T \subseteq B \subseteq P \subseteq G$, X = G/P flag variety
- $0 \leq \beta \in H_2(X)$
- $ev_i: \overline{M}_{0,n}(X,\beta) \to X$
- Schubert varieties $\Gamma_1, \cdots, \Gamma_n \subseteq X$

 $\mathcal{O}_1, \cdots, \mathcal{O}_n \in K^T(X)$ corresponding *T*-equivariant Schubert classes

• T-equivariant K-theoretic Gromov-Witten invariant of X

$$I_{\beta}^{\mathsf{T}}(\mathcal{O}_{1},\cdots,\mathcal{O}_{n}) := \chi^{\mathsf{T}}(\mathsf{ev}_{1}^{*}\mathcal{O}_{1}\cdots\mathsf{ev}_{n}^{*}\mathcal{O}_{n}) \in \mathsf{K}^{\mathsf{T}}(\mathsf{pt})$$

Background

- 3-pointed 'Quantum=Classical' for
 - Cohomological GW-invariants:
 - Buch, Kresch, Tamvakis, '03, '09: (isotropic) Grassmannians
 - Chaput, Manivel, Perrin, '08: cominuscule + type-uniform
 - Leung, Li, '11: some invariants for G/P
 - (Equivariant) K-theoretic GW-invariants:
 - Buch, Mihalcea, '11; Chaput, Perrin, '11: cominuscule G/P
 - Mihalcea, Li, '13: most G/P, β class of a line/Schubert curve
- Line case is particularly nice:

For most choices¹ of G,P, and $\beta = [X_{s_{\alpha}}] \ (\alpha \in \Delta \setminus \Delta_P)$

¹We require that either α is long or the connected component containing α of $\Delta_P \cup \{\alpha\}$ in the Dynkin diagram of *G* is simply laced. This condition ensures that lines in the projective embedding of *X* given by $L_{\omega_{\alpha}}$ are exactly translates of the Schubert curve $X_{s_{\alpha}}$.

Theorem [Buch, Chen, Gibney, X] For most choices² of G,P, and β the class of a Schubert curve, the (*T*-equivariant, *n*-pointed, genus 0) KGW invariant

$$I_{\beta}^{T}(\mathcal{O}_{1},\cdots,\mathcal{O}_{n})=\chi_{G/Q}^{T}(q_{*}p^{*}\mathcal{O}_{1}\cdots q_{*}p^{*}\mathcal{O}_{n}).$$

Corollary [direct proof by C, G, H, K, L, X] The GW Invariant

$$\int_{\overline{M}_{0,n}(X,\beta)} ev_1^*[\Gamma_1] \cdots ev_n^*[\Gamma_n]$$

$$= \int_{G/Q} [q(p^{-1}(\Gamma_1))] \cdots [q(p^{-1}(\Gamma_n))]$$

= #{ β -line in X meeting $g_1\Gamma_1, \cdots, g_n\Gamma_n$ } for $g_1, \cdots, g_n \in G$ general

²The same condition as on the previous page.

A Good Old Example

$$\begin{array}{cccc} FI(1,2;4) & \stackrel{p}{\longrightarrow} \mathbb{P}^{3} & & \overline{M}_{0,1}(\mathbb{P}^{3},1) & \stackrel{ev}{\longrightarrow} \mathbb{P}^{3} \\ q & & & & & \\ q & & & & & \\ Gr(2,4) & & & \overline{M}_{0,0}(\mathbb{P}^{3},1) \end{array}$$

Line $\Gamma \subset \mathbb{P}^3$ $q(p^{-1}(\Gamma))$ Schubert divisor \Box $\Box^4 = 2 \cdot \Box = 2 \cdot [pt]$
$$\begin{split} & 4 \cdot codim(\Gamma) = dim(\overline{M}_{0,4}(\mathbb{P}^3,1)) \\ & \text{The Gromov-Witten invariant} \\ & \int_{\overline{M}_{0,4}(\mathbb{P}^3,1)} ev_1^*[\Gamma] \cdots ev_4^*[\Gamma] = 2 \end{split}$$

Polygons in flag varieties?

Def. A polygon in a flag variety is a tuple of flags $(B_1, \ldots, B_m) \in (G/B_+)^m$ together with a tuple of elements $(w_1, \ldots, w_m) \in W$ representing "distances" between adjacent flags: $B_1 \xrightarrow{w_1} B_2, B_2 \xrightarrow{w_2} B_3, \ldots, B_m \xrightarrow{w_m} B_1$.

Why nice? These "distances" w_i are sometimes called the *relative position* $B_i \xrightarrow{w_i} B_{i+1}$ of two flags. The distances on G/B_+ and $B_- \setminus G$ together with a "codistance" between them form a *twin building*; it says that a flag variety can essentially be viewed as a compact sphere.

Spaces like double Bruhat cells are *torus fibrations* over polygons in flag varieties, which we parameterize by choosing the addition datum of "compatible" sections of $G/B_+ \rightarrow G/U_+$ for each flag B_i .

Key Feature of Polygons in Flag Varieties

These polygons admit triangulations into *easy-exit* triangles, that is, 3-sided polygons on flag varieties where at least one edge is a simple reflection. Such triangles are isomorphic to \mathbf{A}^1 , \mathbf{G}_m , $\{*\}$, or \emptyset , depending on the labels on the other sides and yield iterated \mathbf{A}^1 - or \mathbf{G}_m -fibrations.

e.g. Type A_2 , distances $(s_1, s_2, s_1, s_1, s_2, s_1, w_0)$

Upshot. Some of these "easy-exit" triangulations recover decompositions of these spaces.

e.g. Type A, distances (s_i, w_0, s_i, w_0)

This space is $A^2 \setminus \{xy - 1\}$. It has $(q - 1)^2 + q$ points over F_q .

http://brianhwang.com/slides/2021_icerm.pdf

Application: Effective Point Counting for $R_e^{w_0}$ for $G = SL_4$

Step 1. Set $Q = \mathbf{w} + \mathbf{v}$ where \mathbf{w} and \mathbf{v} are arbitrary reduced expressions for w_0 , e.g. $Q = (s_1, s_2, s_1, s_3, s_2, s_1; s_1, s_2, s_1, s_3, s_2, s_1)$ Step 2. Fix a triangulation of the (|Q| + 1)-gon and run over the possible W-valued distances on the internal edges:

 $121321, \underline{1}2\underline{1}321, 12\underline{1}32\underline{1}, 1\underline{2}13\underline{2}1, \underline{1}213\underline{2}1.$

Only these yield an easy-exit triangulation without a \emptyset -triangle. *Step 3.* Count points on each component:

$$\# \mathsf{Brick}^Q(\mathsf{F}_q) = (q-1)^6 + 3[q(q-1)^4] + q^2(q-1)^2$$

The main result and looking ahead

Thm. (H.) An effective, embarrassingly parallel, deterministic point-counting algorithm—of complexity $O(n \log n)$ where *n* is the sum of (the minimum of lengths/co-lengths) of the sides—for polygons in flag varieties over finite fields, where *G* is a minimal Kac–Moody group.

BIG PICTURE: What properties should a polygon in a flag variety have? At the very least:

1. A "Deodhar-style" decomposition into a disjoint union of $(\mathbf{G}_m)^a \times (\mathbf{A}^1)^b$ components, classified by *distinguished* subexpressions. (Białnicki–Birula decomposition $+ \epsilon$)

2. A natural ("almost sncd") compactification and a set of *canonical coordinates* that yield a group-theoretic parameterization and moduli-theoretic interpretation of these spaces. (Log Calabi–Yau property + monodromy pairing; alternatively, canonical bases)

Prediction: 1+2 = 3. (*Conj.*) The coordinate ring of a polygon U in a flag variety is a cluster algebra. Furthermore, we expect that $(U, \overline{U} \setminus U)$ is a log Calabi–Yau pair with maximal boundary, with a natural dual with respect to the group G^{\vee} .

Thm. (H.–Knutson) Open brick manifolds—polygons where all but one of the "distances" are *simple reflections*, and *G* is simply-connected and semisimple—are cluster varieties. In particular, open Richardson varieties for such *G*.

Matroids, Positroids, and Combinatorial Characterizations Anastasia Chavez

• Native Californian, living in Berkeley with my partner, two kids and several quirky pets

- Finishing as an NSF Postdoc and Krener Assistant Professor, UC Davis, mentored by Dr. Jesus De Loera
- Beginning a tenure-track position at Saint Mary's College of California this summer
- Recently enjoying learning to play the guitar, taking improv classes, and identifying the birds at our bird feeder

Matroids

Definition (Whitney 1935)

A *matroid* is a pair $M = ([n], \mathcal{B})$ where $B \in \mathcal{B}$ is a basis and $B \subset [n]$ such that

- $\mathcal{B} \neq \emptyset$,
- For all $A, B \in \mathcal{B}, a \in A \setminus B \Rightarrow b \in B \setminus A$ s.t. $A a + b \in \mathcal{B}$.

trees:

bases:

max. lin. ind. cols:

$$\mathcal{B} = \{bcf, bdf, bef, cdf, cef\}$$

Positroids

Matroids appear naturally in linear algebra: each k × n full rank matrix over a field F gives rise to a matroid on [n] of rank k.
 Matroids arising in this way are called F-representable.

Definition (Postnikov 2005)

A rank *k* matroid *M* on [*n*] is a *positroid* if it is \mathbb{R} -representable associated with a totally non-negative full-rank real-($k \times n$) matrix.

Example

The matroid M = ([5], B) where $B = \{13, 14, 15, 34, 35, 45\}$ is a positroid:

$$A_M = \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

The matroid $M = ([4], \{12, 14, 23, 34\})$ is not. (why?)

Combinatorics of positroids

Theorem (Postnikov 2006)

A positroid can be represented by a unique: Grassmann necklace, decorated permutation, Le-diagram, and plabic graph.

Define *i* - *Gale order*: For $S = \{s_1 <_i \cdots <_i s_k\}$, $T = \{t_1 <_i \cdots <_i t_k\}$ subsets of [n], $S <_i T$ iff $s_j <_i t_j$ for all $j \in [d]$. Example

- M(A): $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$
- Grassmann necklace (*list of i-Gale-least bases*): $\mathcal{I}_M : (13, 34, 34, 45, 51)$
- Decorated permutation (*encodes swaps between necklace elements*):

$$\sigma_M: 42513$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Combinatorial Characterizations

Unit interval positroids:

Positroids arising from unit interval orders (a poset) in relation with Dyck paths on associated matrices.

Flag positroids and poset of positroid quotients:

Characterization of positroid quotients by applying the *Freeze-Shift-Decorate function* on decorated permutations.

Joint work with Felix Gotti

Joint work with Carolina Benedetti and Daniel Tamayo

Twisted Quadratic Foldings of Root Systems and Combinatorial Schubert Calculus

by Maiko Serizawa

Moment Graph J W: a finite Coxeter group (a finite real reflection group) A directed labelled graph on $(W_{3} \leq)$ Idea Brubot order $W = (S_3 = \left\langle (12), (23) \right\rangle$ e. % Sis2S S2 S1 5,52 a: ... simple root corresponding to Si ditd2

Folding and Induced Map S, Embedding of Coxter groups S2 $W = S_5$ $W_{\tau} \xrightarrow{\epsilon} W$ S_3 S4 Induced map $Z(\mathcal{G}) \xrightarrow{\boldsymbol{\varepsilon}^*} Z(\mathcal{G}_{\boldsymbol{\tau}})$ $\{G^{(w)} | w \in W\} \{G^{(u)}_{\tau} | u \in W_{\tau}\}$ R, R_2 $W_{T} = D_{10}$ Schubert classes Let $u \in W_T$. $(\longrightarrow 6_T^{(u)})$ Q. Is there we we such that $\mathcal{E}^{*}(\mathcal{G}^{(w)}) = C \cdot \mathcal{G}_{T}^{(u)}$ for some nonzero CER?

Main Result

$$\frac{\text{Theorem}}{\text{Theorem}} (S. 2020)$$
Let $u \in W_T$ and $w \in W$. Then
 $\mathcal{E}^*(6^{(w)}) = c \cdot 6^{(w)}_T$ for some $c \in \mathbb{R}^*$
 $\Leftrightarrow w \in W^F$ and $u = \overline{\varphi}(w)$
 $e.g.$
 $s_1 \qquad s_2 \qquad \overline{\varphi}: W^F \longrightarrow W_T$
 $e \longmapsto e$
 $s_3 \qquad \varphi \in S_4 \qquad w = S_{i_1} \cdots S_{i_k} \longrightarrow \varphi(S_{i_1}) \cdots \varphi(S_{i_k})$
 $R_i \qquad R_2 \qquad any reduced expression!$

Example

C C		u e Dio	w e (S5) F & $\overline{\varphi}(w) = u$
S1 S2	0	е	e
S.	I	Rı	S3, SI
		R2	S4, S2
S3 S4	2	R ₁ R ₁	S2S1, S2S3, S4S3
		R_1R_2	S1 S2, S3 S2, S3 S4
\mathbf{V}	3	$R_1R_2R_1$	SIS2S3, S3S2S1
R_1 R_2		$R_2R_1R_2$	S2 S3 S4, S4 S3 S2
5	4	$R_2R_1R_2R_1$	S4 S3 S2 S1
		$R_1R_2R_1R_2$	S1 S2 S3 S4
	5	$R_1R_2R_1R_2R_1$	
By Theorem, for these	'll em	d w, we have	are $\mathcal{E}^{*}(\mathcal{G}^{(w)}) = \mathcal{C} \cdot \mathcal{G}_{\mathcal{T}}^{(u)}$