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Why not a product formula for all Weyl groups ?
arxiv : 2012.04519
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The W - Laplacian and its determinant arxiv : 2012.04519

W is a Weyl group acting on V=R
"
.
It has set of reflections R , root

system 0, and reflection representation pv .
Its W- Laplacian Lw is :

Defn 1 : Glas 3 Lw : - Ep ( In - puts) Defa2 : Lw Lv) :=¥µLv, Is . 6↳ the nxn identity matrix
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Summary / Advertisement arxiv : 2012.04519
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An innocent observation...

Obs 1. A lot of the “big” (e.g. affine, open) spaces that arise when studying
flag varieties seem very similar.

Some of these are known to have special features. Two extremal cases:

I Open Richardson varieties Rv
u = Xu ∩ X v (where Xu and X v are Schubert

and opposite Schubert varieties) have an explicit combinatorial
decomposition into a disjoint union of finitely many components of the
form (Gm)a × (A1)b for varying (a, b).

I Double Bruhat cells G u,v = B+uB+ ∩ B−vB− are cluster varieties and so
admit a combinatorial decomposition into a highly nondisjoint union of
possibly infinitely many components of the form (Gm)d for a fixed d .

These correspond to two ways in which we can “doubly slice up” a group:

G =
⊔
u∈W

⊔
v∈W

Rv
u =

⊔
u∈W

⊔
v∈W

G u,v ,

but are quite different: e.g. Ru,v 6= ∅ if and only if u ≤ v but G u,v is always
nonempty.

Obs 2. Many of these spaces, including the examples above, are polygons in
flag varieties, T -fibrations over these, or unions/intersections thereof.
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Set-up

Fix T ⊆ B ⊆ P ⊆ G , X = G/P flag variety

0 ≤ β ∈ H2(X )

evi : M0,n(X , β)→ X

Schubert varieties Γ1, · · · , Γn ⊆ X

O1, · · · ,On ∈ KT (X ) corresponding T -equivariant Schubert classes

T -equivariant K-theoretic Gromov-Witten invariant of X

ITβ (O1, · · · ,On) := χT (ev∗
1O1 · · · ev∗

nOn) ∈ KT (pt)

2 / 5



Background

3-pointed ‘Quantum=Classical’ for
Cohomological GW-invariants:

Buch, Kresch, Tamvakis, ’03, ’09: (isotropic) Grassmannians

Chaput, Manivel, Perrin, ’08: cominuscule + type-uniform

Leung, Li, ’11: some invariants for G/P

(Equivariant) K-theoretic GW-invariants:

Buch, Mihalcea, ’11; Chaput, Perrin, ’11: cominuscule G/P

Mihalcea, Li, ’13: most G/P, β class of a line/Schubert curve

Line case is particularly nice:

For most choices1 of G ,P, and β = [Xsα ] (α ∈ ∆ \∆P)

M0,1(X , β)
ev−−−−→ Xy

M0,0(X , β)

=

G/(P ∩ Q)
p−−−−→ G/P

q

y
G/Q

1We require that either α is long or the connected component containing α of

∆P ∪ {α} in the Dynkin diagram of G is simply laced. This condition ensures that

lines in the projective embedding of X given by Lωα are exactly translates of the

Schubert curve Xsα .
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n-pointed ‘Quantum = Classical’ for Lines

Theorem [Buch, Chen, Gibney, X] For most choices2 of G ,P, and β
the class of a Schubert curve, the (T -equivariant, n-pointed, genus 0)
KGW invariant

ITβ (O1, · · · ,On) = χT
G/Q(q∗p

∗O1 · · · q∗p∗On).

Corollary [direct proof by C, G, H, K, L, X] The GW Invariant∫
M0,n(X ,β)

ev∗
1 [Γ1] · · · ev∗

n [Γn]

=
∫
G/Q

[q(p−1(Γ1))] · · · [q(p−1(Γn))]

= #{β-line in X meeting g1Γ1, · · · , gnΓn} for g1, · · · , gn ∈ G general

2The same condition as on the previous page.
4 / 5



A Good Old Example

Fl(1, 2; 4)
p−−−−→ P3

q

y
Gr(2, 4)

=

M0,1(P3, 1)
ev−−−−→ P3y

M0,0(P3, 1)

Line Γ ⊂ P3

q(p−1(Γ)) Schubert divisor

4
= 2 · = 2 · [pt]

4 · codim(Γ) = dim(M0,4(P3, 1))

The Gromov-Witten invariant∫
M0,4(P3,1)

ev∗
1 [Γ] · · · ev∗

4 [Γ] = 2

5 / 5



Polygons in flag varieties?

Def. A polygon in a flag variety is a tuple of flags (B1, . . . ,Bm) ∈ (G/B+)m

together with a tuple of elements (w1, . . . ,wm) ∈W representing “distances”

between adjacent flags: B1
w1→ B2,B2

w2→ B3, . . . ,Bm
wm→ B1.

e.g. For G = SL3,PGL3,GL3; W ∼=
〈
s1, s2 | s21 = s22 = (s1s2)3 = e

〉 ∼= S3

•xy
x • xy

L

•

P
x

A1

s1

s1s2s2

•xy
x • xy

L

•

xy
L′

Gm

s1

s1s1

•xy
x • xy

L

•

P
L

◦

s1

s2s1s2

•xy
x • xy

L
& P

L′ ?

•

xy
L′

∅

s1

s2s1

Why nice? These “distances” wi are sometimes called the relative position

Bi
wi→ Bi+1 of two flags. The distances on G/B+ and B−\G together with a

“codistance” between them form a twin building; it says that a flag variety can
essentially be viewed as a compact sphere.

Spaces like double Bruhat cells are torus fibrations over polygons in flag
varieties, which we parameterize by choosing the addition datum of
“compatible” sections of G/B+ → G/U+ for each flag Bi .

http://brianhwang.com/slides/2021 icerm.pdf
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Key Feature of Polygons in Flag Varieties

These polygons admit triangulations into easy-exit triangles, that is, 3-sided
polygons on flag varieties where at least one edge is a simple reflection. Such
triangles are isomorphic to A1, Gm, {∗}, or ∅, depending on the labels on the
other sides and yield iterated A1- or Gm-fibrations.

e.g. Type A2, distances (s1, s2, s1, s1, s2, s1,w0)

• • • •

• • •

s1 s2 s1

s1 s2

w0 w0 w0 s2s1 s1 s1
Gm

Gm

Gm

⊂

• • • •

• • •

s1 s2 s1

s1 s2

w0 s1

Upshot. Some of these “easy-exit” triangulations recover decompositions of
these spaces.

e.g. Type A, distances (si ,w0, si ,w0)

• •

• •

w0

s1

w0

s1

=

• •

• •

w0

s1

w0

s1

w0

Gm

Gm ⋃
• •

• •

w0

s1

w0

s1

w0

Gm

Gm

=

• •

• •

w0

s1

w0

s1

w0

Gm

Gm

⊔
• •

• •

w0

s1

w0

s1

w0s1

◦

A1

This space is A2\{xy − 1}. It has (q − 1)2 + q points over Fq.
http://brianhwang.com/slides/2021 icerm.pdf
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Application: Effective Point Counting for Rw0
e for G = SL4

Step 1. Set Q = w + v where w and v are arbitrary reduced expressions for w0,
e.g. Q = (s1, s2, s1, s3, s2, s1; s1, s2, s1, s3, s2, s1)
Step 2. Fix a triangulation of the (|Q|+ 1)-gon and run over the possible
W -valued distances on the internal edges:

•

•
•

•

•

•

•

•

••

•

•

•

s1

s2 s1

s3

s2

s1

s1

s2

s1
s3

s2

s1

w0

B0 = B+

B1

B2
B3

B4

B5

B6

B7

B8B9

B10

B11

B12 = B−

w0

 

•

•

•

•

•

•

•

•

s1 s2

s1

s3

s2s1

w0

w0

B0 = B+

B1

B2

B3

B4

B5

B6

B12 = B−

w0s1

w0s1

w0

w0

w0

◦ Gm

A1

Gm

GmGm

Rem. The valid distances on the internal diagonals for this “shell” triangulation
correspond to distinguished subexpressions for e in w (in sense of Deodhar):

121321, 121321, 121321, 121321, 121321.

Only these yield an easy-exit triangulation without a ∅-triangle.
Step 3. Count points on each component:

# ˚Brick
Q

(Fq) = (q − 1)6 + 3[q(q − 1)4] + q2(q − 1)2
http://brianhwang.com/slides/2021 icerm.pdf
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The main result and looking ahead
Thm. (H.) An effective, embarrassingly parallel, deterministic point-counting
algorithm—of complexity O(n log n) where n is the sum of (the minimum of
lengths/co-lengths) of the sides—for polygons in flag varieties over finite fields,
where G is a minimal Kac–Moody group.

BIG PICTURE: What properties should a polygon in a flag variety have? At
the very least:

1. A “Deodhar-style” decomposition into a disjoint union of (Gm)a × (A1)b

components, classified by distinguished subexpressions. (Bia lnicki–Birula
decomposition + ε)

2. A natural (“almost sncd”) compactification and a set of canonical
coordinates that yield a group-theoretic parameterization and moduli-theoretic
interpretation of these spaces. (Log Calabi–Yau property + monodromy
pairing; alternatively, canonical bases)

Prediction: 1+2 = 3. (Conj.) The coordinate ring of a polygon U in a flag
variety is a cluster algebra. Furthermore, we expect that (U,U\U) is a log
Calabi–Yau pair with maximal boundary, with a natural dual with respect to
the group G∨.

Thm. (H.–Knutson) Open brick manifolds—polygons where all but one of the
“distances” are simple reflections, and G is simply-connected and
semisimple—are cluster varieties. In particular, open Richardson varieties for
such G . http://brianhwang.com/slides/2021 icerm.pdf
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Matroids, Positroids, and Combinatorial Characterizations
Anastasia Chavez

• Native Californian, living in Berkeley with my partner, two kids
and several quirky pets

• Finishing as an NSF Postdoc and Krener Assistant Professor, UC
Davis, mentored by Dr. Jesus De Loera

• Beginning a tenure-track position at Saint Mary’s College of
California this summer

• Recently enjoying learning to play the guitar, taking improv
classes, and identifying the birds at our bird feeder



Matroids

Definition (Whitney 1935)
A matroid is a pair M = ([n],B) where B ∈ B is a basis and B ⊂ [n]
such that
• B 6= ∅,
• For all A,B ∈ B, a ∈ A\B⇒ b ∈ B\A s.t. A− a + b ∈ B.

a

b c

d

c b

d

e
f a

trees:

e
d

f

c

b
a

bases:

a b c d e f
0 1 1 0 0 0
0 0 1 1 2 0
0 0 0 0 0 1

max. lin. ind. cols:

B = {bcf , bdf , bef , cdf , cef}



Positroids
• Matroids appear naturally in linear algebra: each k × n full rank

matrix over a field F gives rise to a matroid on [n] of rank k.
Matroids arising in this way are called F-representable.

Definition (Postnikov 2005)
A rank k matroid M on [n] is a positroid if it is R-representable
associated with a totally non-negative full-rank real-(k × n) matrix.

Example
The matroid M = ([5],B) where B = {13, 14, 15, 34, 35, 45} is a
positroid:

AM =

(
1 0 1 0 −2
0 0 1 1 2

)
.

The matroid M = ([4], {12, 14, 23, 34}) is not. (why?)



Combinatorics of positroids
Theorem (Postnikov 2006)
A positroid can be represented by a unique: Grassmann necklace,
decorated permutation, Le-diagram, and plabic graph.

Define i - Gale order: For S = {s1 <i · · · <i sk},
T = {t1 <i · · · <i tk} subsets of [n], S <i T iff sj <i tj for all j ∈ [d].

Example
• M(A): B = {13, 14, 15, 34, 35, 45}
• Grassmann necklace (list of i-Gale-least bases):

IM : (13, 34, 34, 45, 51)

• Decorated permutation (encodes swaps between necklace
elements):

σM : 42513



Combinatorial Characterizations

Unit interval positroids:
Positroids arising from unit
interval orders (a poset) in
relation with Dyck paths on
associated matrices.

DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS 3

permutation of the unit interval positroid induced by P by reading the semiorder (Dyck)
path in northwest direction.

Example 1.2. The vertical assignment on the left of Figure 2 shows a set I of unit
intervals along with a canonically labeled unit interval order P on [5] describing the
order relations among the intervals in I (see Theorem 2.2). The vertical assignment on
the right illustrates the recipe given in Theorem 1.1 to read the decorated permutation
⇡ = (1 2 10 3 9 4 8 7 5 6) associated to the unit interval positroid induced by P
directly from the antiadjacency matrix. Note that the decorated permutation ⇡ is a
10-cycle satisfying conditions (1) and (2) of our main theorem. The solid and dashed
assignment signs represent functions that we shall introduce later.

Figure 2. Following the solid assignments: unit interval representation
I, its unit interval order P , the antiadjacency matrix '(P ), and the
semiorder (Dyck) path of '(P ) showing the decorated permutation ⇡.

This paper is organized as follows. In Section 2 we establish the notation and
formally present the fundamental concepts and objects used throughout this paper.
Then, in Section 3, we formally introduce canonical labelings and canonical interval
representations of unit interval orders. Also, we use canonical labelings to exhibit an
explicit bijection from the set of non-isomorphic unit interval orders on [n] to the set
of n ⇥ n Dyck matrices. Section 4 is dedicated to the description of the unit interval
positroids via their decorated permutations, which yields the direct implication of the
main theorem. Finally, in Section 5, we show how to read the decorated permutation
of a unit interval positroid from either an antiadjacency matrix or a canonical interval
representation of the corresponding unit interval order, which allows us to complete
the proof of the main theorem.

(1 2 10 3 9 4 8 7 5 6), , , , , , , , ,

Joint work with Felix Gotti

Flag positroids and poset of
positroid quotients:
Characterization of positroid
quotients by applying the
Freeze-Shift-Decorate function
on decorated permutations.

Joint work with Carolina Benedetti and Daniel Tamayo
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