# Doing Schubert Calculus with Bumpless Pipe Dreams 

Daoji Huang<br>ICERM, Brown University

March 24, 2021

## Basics of bumpless pipe dreams

Definition (Lam-Lee-Shimozono '18). An $S_{n}$-bumpless pipe dream is a tiling of an $n \times n$ grid by the following six kinds of tiles
$\square$
$\square$

such that $n$ pipes travel from the south edge and exit from the east edge, and no two pipes cross twice.

Example. A bumpless pipe dream for $13254 \in S_{5}$


## Basics of bumpless pipe dreams

- The set of bumpless pipe dreams for a permutation $\pi$ is denoted as $\operatorname{BPD}(\pi)$.
- The Rothe bumpless pipe dream of $\pi$ is the bumpless pipe dream of $\pi$ that looks like the Rothe diagram of $\pi$.
- All bumpless pipe dreams of $\pi$ can be obtained from the Rothe bumpless pipe dream by performing a sequence of droop moves.
- In a bumpless pipe dream, there are always as many blank tiles as there are crosses.


## BPDs compute (double) Schubert polynomials

## Definition-Theorem (Lam-Lee-Shimozono '18)

The bumpless pipe dream polynomial for $\pi \in S_{\infty}:=\bigcup_{n} S_{n}$ is defined as

$$
\mathfrak{S}_{\pi}(\mathbf{x},-\mathbf{y}):=\sum_{D \in \operatorname{BPD}(\pi)} \prod_{(i, j) \in \operatorname{blank}(D)}\left(x_{i}-y_{j}\right)
$$

It is the same as the double Schubert polynomial for $\pi$. Setting $\mathbf{y}=0$, we get Schubert polynomials.

## Example:

$\mathfrak{S}_{2143}(\mathbf{x},-\mathbf{y})=\left(x_{1}-y_{1}\right)\left(x_{3}-y_{3}\right)+\left(x_{1}-y_{1}\right)\left(x_{2}-y_{1}\right)+\left(x_{1}-y_{1}\right)\left(x_{1}-y_{2}\right)$

$$
\mathfrak{S}_{2143}(\mathbf{x})=x_{1} x_{3}+x_{1} x_{2}+x_{1}^{2}
$$



## Basics of Schubert calculus

- The classes of Schubert varieties $\left\{\left[X_{\pi}\right]\right\}_{\pi \in S_{n}}$ form a $\mathbb{Z}$-linear basis of

$$
H^{*}\left(F /\left(\mathbb{C}^{n}\right), \mathbb{Z}\right) \cong \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right] / /
$$

where $I=\langle$ symmetric functions with no constant terms $\rangle$.

- Schubert polynomials $\mathfrak{S}_{\pi}$ are nice representatives of Schubert classes.
- $\mathfrak{S}_{\pi}(\mathbf{x}) \mathfrak{S}_{\rho}(\mathbf{x})=\sum_{\sigma} c_{\pi, \rho}^{\sigma} \mathfrak{S}_{\sigma}(\mathbf{x})$. The Schubert structure constants $c_{\pi, \rho}^{\sigma}$ are nonnegative integers.
In the $T$-equivariant setting,
- $H_{T}^{*}\left(F /\left(\mathbb{C}^{n}\right), \mathbb{Z}\right)$ is a free module over $H_{T}^{*}(p t, \mathbb{Z})=\mathbb{Z}\left[y_{1}, \cdots, y_{n}\right]$ generated by the $T$-equivariant Schubert classes $\left\{\left[X_{\pi}\right]_{T}\right\}_{\pi \in S_{n}}$
- Double Schubert polynomials represent $T$-equivariant Schubert classes.


## Monk's rule for Schubert polynomials

Theorem (Monk, 1959)
Let $\pi \in S_{\infty}, \alpha \geq 1$.

$$
\begin{aligned}
\mathfrak{S}_{\alpha}(\mathbf{x}) \mathfrak{S}_{\pi}(\mathbf{x}) & =\left(x_{1}+x_{2}+\cdots+x_{\alpha}\right) \mathfrak{S}_{\pi}(\mathbf{x}) \\
& =\sum_{\substack{k \leq \alpha<\ell \\
\pi t_{k}, \ell>\pi}} \mathfrak{S}_{\pi t_{k, \ell}}(\mathbf{x})
\end{aligned}
$$

Subtracting $\mathfrak{S}_{\alpha-1}(\mathbf{x}) \mathfrak{S}_{\pi}(\mathbf{x})$ and rearranging, we get

$$
x_{\alpha} \mathfrak{S}_{\pi}(\mathbf{x})+\sum_{\substack{k<\alpha \\ \pi t_{k, \alpha} \gtrdot \pi}} \mathfrak{S}_{\pi t_{k, \alpha}}(\mathbf{x})=\sum_{\substack{\alpha \alpha \ell \ell \\ \pi t_{\alpha}, \ell>\pi}} \mathfrak{S}_{\pi t_{\alpha, \ell}}(\mathbf{x})
$$

- When the sum on the r.h.s has only one summand, we get the transition formula.
- When the sum on the I.h.s is empty, we get the co-transition formula.


## Monk's rule expressed with bumpless pipe dreams

## Theorem (H. '20)

Given $\pi \in S_{n}$ and $1 \leq \alpha<n$ such that there exists $\ell>\alpha$ where $\pi t_{\alpha, \ell} \gtrdot \pi$, there exists a bijection

$$
\Phi_{\pi}:\left\{x_{\alpha}\right\} \times \operatorname{BPD}(\pi) \sqcup \coprod_{\substack{k<\alpha \\ \pi t_{k, \alpha} \gtrdot \pi}} \operatorname{BPD}\left(\pi t_{k, \alpha}\right) \rightarrow \coprod_{\substack{\alpha<\ell \\ \pi t_{\alpha, \ell} \gg}} \operatorname{BPD}\left(\pi t_{\alpha, \ell}\right)
$$

that proves Monk's rule bijectively.

## Context and Implications

- Weigandt '20 showed an "easy" bijection of the equivariant transition rule with bumpless pipe dreams
- Knutson '19 showed an "easy" bijection of the equivariant co-transition rule with ordinary pipe dreams
- Billey-Holroyd-Young '12 gave a "hard" non-equivariant bijective proof of the transition rule with ordinary pipe dreams
- With either the (non-equivariant) transition or co-transition bijections on pipe dreams and bumpless pipe dreams, one can construct inductively bijections between $\operatorname{BPD}(\pi)$ and $\operatorname{PD}(\pi)$


## Monk's rule for double Schubert polynomials

Theorem (Monk's rule for double Schubert polynomials)
Let $\pi \in S_{\infty}, \alpha \geq 1$.

$$
\mathfrak{S}_{\alpha}(\mathbf{x},-\mathbf{y}) \mathfrak{S}_{\pi}(\mathbf{x},-\mathbf{y})=\sum_{\substack{k \leq \alpha<\ell \\ \pi t_{k}, \ell>\pi}} \mathfrak{S}_{\pi t_{k, \ell}}(\mathbf{x},-\mathbf{y})+\sum_{i=1}^{\alpha}\left(y_{\pi(i)}-y_{i}\right) \mathfrak{S}_{\pi}(\mathbf{x},-\mathbf{y})
$$

Subtracting $\mathfrak{S}_{\alpha-1} \mathfrak{S}_{\pi}$ and rearranging, we get

$$
\left(x_{\alpha}-y_{\pi(\alpha)}\right) \mathfrak{S}_{\pi}(\mathbf{x},-\mathbf{y})+\sum_{\substack{k<\alpha \\ \pi t_{k, \alpha} \gtrdot \pi}} \mathfrak{S}_{\pi t_{k, \alpha}}(\mathbf{x},-\mathbf{y})=\sum_{\substack{\alpha<\ell \\ \pi t_{\alpha, \ell} \gtrdot \pi}} \mathfrak{S}_{\pi t_{\alpha, \ell}}(\mathbf{x},-\mathbf{y})
$$

Q: Can this be proved bijectively?
A: Yes! With decorated bumpless pipe dreams, where each blank tile is decorated with a binary label, " $x$ " or " -y ".

## Monk's rule for double Schubert polynomials

Let $\widetilde{\operatorname{BPD}}(\pi):=\{(D, f): D \in \operatorname{BPD}(\pi), f: \operatorname{blank}(D) \rightarrow\{x,-y\}\}$ be the set of decorated bumpless pipe dreams for $\pi$. Then

$$
\mathfrak{S}_{\pi}(\mathrm{x},-\mathrm{y})=\sum_{(D, f) \in \widetilde{\operatorname{BPD}}(\pi)} \prod_{\substack{(i, j \in \operatorname{blank}(D) \\(i, j)=x}} x_{i} \prod_{\substack{(i, j) \in \text { blank }(D) \\ f(i, j)=-y}}\left(-y_{i}\right)
$$

Theorem (H. '20)
Given $\pi \in S_{n}$ and $1 \leq \alpha<n$ such that there exists $\ell>\alpha$ where $\pi t_{\alpha, \ell} \gtrdot \pi$, there exists a bijection

$$
\widetilde{\Phi}_{\pi}:(\{\mathrm{x},-\mathrm{y}\} \times \widetilde{\operatorname{BPD}}(\pi)) \sqcup \coprod_{\substack{k<\alpha \\ \pi t_{k, \alpha} \gtrdot \pi}} \widetilde{\operatorname{BPD}}\left(\pi t_{k, \alpha}\right) \rightarrow \coprod_{\substack{\alpha<\ell \\ \pi t_{\alpha}, \ell>\pi}} \widetilde{\operatorname{BPD}}\left(\pi t_{\alpha, \ell}\right)
$$

that proves Monk's rule for double Schubert polynomials bijectively.

Can bumpless pipe dreams tell us something about Schubert calculus we didn't know before?

## The separated descent Schubert problems

## Definition

The descents of a permutation $\pi$ is the set

$$
\operatorname{Des}(\pi):=\{i: \pi(i)>\pi(i+1)\}
$$

Example. $\pi=5|13| 246, \operatorname{Des}(\pi)=\{1,3\}$
Definition (Knutson-Zinn-Justin)
Two permutations $\pi$ and $\rho$ have separated descents at position $k$ if $\pi$ has no descents before position $k$ and $\rho$ has no descents after position $k$.

Example. $\pi=135|26| 4, \rho=5|14| 236, k=3$
Non-Example. $\pi=14|3| 2, \rho=2|14| 3$
This condition defines a subclass of the Schubert problem $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}=\sum_{\sigma} c_{\pi, \rho}^{\sigma} \mathfrak{S}_{\sigma}$ where $\pi$ and $\rho$ have separated descents.

## The context

- Grassmannian Schubert problem: $\pi$ and $\rho$ both have a single descent at position $k$ (e.g. $k=3, \pi=135|246, \rho=236| 145$ ) (Littlewood-Richardson 1937, made correct decades later, many different rules), generalized by...
- Kogan Schubert problem: $\pi$ has a single descent at position $k, \rho$ has descents either at or before position $k$, or at or after position $k$ (e.g. $k=3, \pi=135|246, \rho=26| 3 \mid 145$ ) (Kogan '00, with different rules later given by Knutson-Yong '04, Lenart '10, Assaf '17), generalized by...
- Separated descent Schubert problem: defined and solved by Knutson-Zinn-Justin '19 with puzzles using theory of quiver varieties (not yet published). Our rule is a tableaux/BPD rule using elementary methods.


## Schubert products for permutations with separated descents

## Theorem (H.)

Let $\pi, \rho \in S_{n}$ where $\pi$ has no descents before position $k$ and $\rho$ has no descents after position $k$. Define

$$
\pi \star \rho(i)= \begin{cases}\pi(i+k)-k & \text { if } i \in[1-k, 0] \\ \rho(i)+n-k & \text { if } i \in[1, k] \\ \pi(i)-k & \text { if } i \in[k+1, n] \\ (i-n \text {th smallest number in } \\ {[1-k, 2 n-k] \backslash \pi * \rho([1-k, n])} & \text { if } i \in[n+1,2 n-k] .\end{cases}
$$

Let $\sigma \in S_{2 n-k}$ such that $\ell(\pi \star \rho)-\ell(\sigma)=\ell\left((\pi \star \rho) \sigma^{-1}\right)=k(n-k)$.The Schubert structure constant $c_{\pi, \rho}^{\sigma}$ is equal to the number of reduced word tableaux $T$ of shape $k \times(n-k)$ such that the permutation associated to $T$ is $(\pi \star \rho) \sigma^{-1}$. Furthermore, $c_{\pi, \rho}^{\sigma}=0$ for all other $\sigma$.

## Example

Let $n=6, k=3, \pi=135|26| 4, \rho=5|13| 246$, then
$\pi \star \rho=[-2,0,2,8,4,6,-1,3,1,5,7,9]$.

$$
\begin{aligned}
\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}= & \mathfrak{S}_{615243}+\mathfrak{S}_{534162}+\mathfrak{S}_{625134}+\mathfrak{S}_{526143}+2 \mathfrak{S}_{624153} \\
& +\mathfrak{S}_{7152346}+\mathfrak{S}_{7142536}+\mathfrak{S}_{7231546}
\end{aligned}
$$

For $\sigma=624153$, there are two Coxeter-Knuth classes of reduced words for $(\pi \star \rho) \sigma^{-1}$ whose reduced word tableaux are of shape $3 \times 3$. These are

| -1 | 1 | 3 |
| :--- | :--- | :--- |
| 0 | 4 | 5 |
| 2 | 6 | 7 |


| -1 | 1 | 3 |
| :---: | :--- | :--- |
| 0 | 2 | 5 |
| 4 | 6 | 7 |

For $\sigma=7142536$, there is one Coxeter-Knuth class of reduced words for $(\pi \star \rho) \sigma^{-1}$ whose reduced word tableau is of shape $3 \times 3$ :

| -1 | 1 | 3 |
| :--- | :--- | :--- |
| 0 | 2 | 5 |
| 1 | 4 | 7 |

## The idea



