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Basics of bumpless pipe dreams

Definition (Lam-Lee-Shimozono ’18). An Sn-bumpless pipe dream is a
tiling of an n × n grid by the following six kinds of tiles

such that n pipes travel from the south edge and exit from the east edge,
and no two pipes cross twice.

Example. A bumpless pipe dream for 13254 ∈ S5
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Basics of bumpless pipe dreams

The set of bumpless pipe
dreams for a permutation π is
denoted as BPD(π).

The Rothe bumpless pipe
dream of π is the bumpless pipe
dream of π that looks like the
Rothe diagram of π.

All bumpless pipe dreams of π
can be obtained from the Rothe
bumpless pipe dream by
performing a sequence of droop
moves.

In a bumpless pipe dream, there
are always as many blank tiles
as there are crosses.
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BPDs compute (double) Schubert polynomials

Definition-Theorem (Lam-Lee-Shimozono ’18)

The bumpless pipe dream polynomial for π ∈ S∞ :=
⋃

n Sn is defined as

Sπ(x,−y) :=
∑

D∈BPD(π)

∏
(i ,j)∈blank(D)

(xi − yj).

It is the same as the double Schubert polynomial for π. Setting y = 0, we
get Schubert polynomials.

Example:

S2143(x,−y) = (x1− y1)(x3− y3) + (x1− y1)(x2− y1) + (x1− y1)(x1− y2)

S2143(x) = x1x3 + x1x2 + x21
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Basics of Schubert calculus

The classes of Schubert varieties {[Xπ]}π∈Sn form a Z-linear basis of

H∗(Fl(Cn),Z) ∼= Z[x1, · · · , xn]/I ,

where I = 〈symmetric functions with no constant terms〉.
Schubert polynomials Sπ are nice representatives of Schubert classes.

Sπ(x)Sρ(x) =
∑

σ c
σ
π,ρSσ(x). The Schubert structure constants

cσπ,ρ are nonnegative integers.

In the T -equivariant setting,

H∗T (Fl(Cn),Z) is a free module over H∗T (pt,Z) = Z[y1, · · · , yn]
generated by the T -equivariant Schubert classes {[Xπ]T}π∈Sn
Double Schubert polynomials represent T -equivariant Schubert
classes.
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Monk’s rule for Schubert polynomials

Theorem (Monk, 1959)

Let π ∈ S∞, α ≥ 1.

Sα(x)Sπ(x) = (x1 + x2 + · · ·+ xα)Sπ(x)

=
∑

k≤α<`
πtk,`mπ

Sπtk,`(x)

Subtracting Sα−1(x)Sπ(x) and rearranging, we get

xαSπ(x) +
∑
k<α

πtk,αmπ

Sπtk,α(x) =
∑
α<`

πtα,`mπ

Sπtα,`(x)

When the sum on the r.h.s has only one summand, we get the
transition formula.

When the sum on the l.h.s is empty, we get the co-transition formula.
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Monk’s rule expressed with bumpless pipe dreams

Theorem (H. ’20)

Given π ∈ Sn and 1 ≤ α < n such that there exists ` > α where πtα,` m π,
there exists a bijection

Φπ : {xα} × BPD(π) t
∐
k<α

πtk,αmπ

BPD(πtk,α)→
∐
α<`

πtα,`mπ

BPD(πtα,`)

that proves Monk’s rule bijectively.
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Context and Implications

Weigandt ’20 showed an “easy” bijection of the equivariant transition
rule with bumpless pipe dreams

Knutson ’19 showed an “easy” bijection of the equivariant
co-transition rule with ordinary pipe dreams

Billey-Holroyd-Young ’12 gave a “hard” non-equivariant bijective
proof of the transition rule with ordinary pipe dreams

With either the (non-equivariant) transition or co-transition bijections
on pipe dreams and bumpless pipe dreams, one can construct
inductively bijections between BPD(π) and PD(π)
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Monk’s rule for double Schubert polynomials

Theorem (Monk’s rule for double Schubert polynomials)

Let π ∈ S∞, α ≥ 1.

Sα(x,−y)Sπ(x,−y) =
∑

k≤α<`
π tk,`mπ

Sπ tk,`(x,−y) +
α∑

i=1

(yπ(i) − yi )Sπ(x,−y)

Subtracting Sα−1Sπ and rearranging, we get

(xα − yπ(α))Sπ(x,−y) +
∑
k<α

π tk,αmπ

Sπ tk,α(x,−y) =
∑
α<`

π tα,`mπ

Sπ tα,`(x,−y)

Q: Can this be proved bijectively?
A: Yes! With decorated bumpless pipe dreams, where each blank tile is
decorated with a binary label, “x” or “−y”.
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Monk’s rule for double Schubert polynomials

Let B̃PD(π) := {(D, f ) : D ∈ BPD(π), f : blank(D)→ {x,−y}} be the
set of decorated bumpless pipe dreams for π. Then

Sπ(x,−y) =
∑

(D,f )∈B̃PD(π)

∏
(i ,j)∈blank(D)

f (i ,j)=x

xi
∏

(i ,j)∈blank(D)
f (i ,j)=−y

(−yi )

Theorem (H. ’20)

Given π ∈ Sn and 1 ≤ α < n such that there exists ` > α where πtα,` m π,
there exists a bijection

Φ̃π : ({x,−y} × B̃PD(π)) t
∐
k<α

π tk,αmπ

B̃PD(π tk,α)→
∐
α<`

π tα,`mπ

B̃PD(π tα,`)

that proves Monk’s rule for double Schubert polynomials bijectively.
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Can bumpless pipe dreams tell us something about Schubert calculus we
didn’t know before?
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The separated descent Schubert problems

Definition

The descents of a permutation π is the set

Des(π) := {i : π(i) > π(i + 1)}

Example. π = 5|13|246, Des(π) = {1, 3}

Definition (Knutson–Zinn-Justin)

Two permutations π and ρ have separated descents at position k if π
has no descents before position k and ρ has no descents after position k .

Example. π = 135|26|4, ρ = 5|14|236, k = 3
Non-Example. π = 14|3|2, ρ = 2|14|3

This condition defines a subclass of the Schubert problem
SπSρ =

∑
σ c

σ
π,ρSσ where π and ρ have separated descents.
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The context

Grassmannian Schubert problem: π and ρ both have a single
descent at position k (e.g. k = 3, π = 135|246, ρ = 236|145)
(Littlewood-Richardson 1937, made correct decades later, many
different rules), generalized by...

Kogan Schubert problem: π has a single descent at position k , ρ
has descents either at or before position k , or at or after position k
(e.g. k = 3, π = 135|246, ρ = 26|3|145) (Kogan ’00, with different
rules later given by Knutson-Yong ’04, Lenart ’10, Assaf ’17),
generalized by...

Separated descent Schubert problem: defined and solved by
Knutson–Zinn-Justin ’19 with puzzles using theory of quiver varieties
(not yet published). Our rule is a tableaux/BPD rule using
elementary methods.
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Schubert products for permutations with separated
descents

Theorem (H.)

Let π, ρ ∈ Sn where π has no descents before position k and ρ has no
descents after position k. Define

π ? ρ(i) =


π(i + k)− k if i ∈ [1− k, 0]

ρ(i) + n − k if i ∈ [1, k]

π(i)− k if i ∈ [k + 1, n]
(i−n)th smallest number in
[1−k,2n−k]\π?ρ([1−k,n]) if i ∈ [n + 1, 2n − k].

Let σ ∈ S2n−k such that `(π ? ρ)− `(σ) = `((π ? ρ)σ−1) = k(n − k).The
Schubert structure constant cσπ,ρ is equal to the number of reduced word
tableaux T of shape k × (n − k) such that the permutation associated to
T is (π ? ρ)σ−1. Furthermore, cσπ,ρ = 0 for all other σ.
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Example

Let n = 6, k = 3, π = 135|26|4, ρ = 5|13|246, then
π ? ρ = [−2, 0, 2, 8, 4, 6,−1, 3, 1, 5, 7, 9].

SπSρ =S615243 + S534162 + S625134 + S526143 + 2S624153

+ S7152346 + S7142536 + S7231546

For σ = 624153, there are two Coxeter-Knuth classes of reduced words for
(π ? ρ)σ−1 whose reduced word tableaux are of shape 3× 3. These are

−1 1 3

0 4 5

2 6 7

−1 1 3

0 2 5

4 6 7

For σ = 7142536, there is one Coxeter-Knuth class of reduced words for
(π ? ρ)σ−1 whose reduced word tableau is of shape 3× 3:

−1 1 3

0 2 5

1 4 7
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The idea
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