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Plan

(a) Rigid local systems (definitions and problem of rigid local
systems with unitary, and finite global monodromy).

(b) The multiplicative eigenvalue problem, and the problem of
vertices of eigenpolytopes (quantum generalizations of
Littlewood-Richardson cones).

(c) The relationship between (a), (b) via strange duality.

(d) Consequences for rigid local systems.

(e) Method of proof and computation of vertices.



Rigid local systems

A rank ` local system on P1
C − S , S = {p1, . . . , ps}, is a s-tuple

(A1, . . . ,As) of matrices Ai ∈ GL(`,C) with product
A1A2 · · ·As = I . Such tuples are taken up to conjugacy, i.e.,
(A1, . . . ,As) ∼ (CA1C

−1,CA2C
−1, . . . ,CAsC

−1).

They are identified with reps ρ : π1(P1
C − S , b)→ GL(`,C), with

ρ(loop around pi ) = Ai . The image of ρ is called the (global)
monodromy group of the local system.

I The local system is irreducible if ρ is irreducible.

I The local system is rigid, if any other local system with the
same local monodromies Bi (i.e, Bi is conjugate to Ai ) is
conjugate to it. That is there is a single C such that
CBiC

−1 = Ai .

The rigidity condition on an irreducible local system can be
captured by a numerical equation (“expected dimension =0”).



Questions

This concept has origins in the work of Riemann on
hypergeometric functions. Katz shows all (irreducible) rigid local
systems are produced by an inductive, algorithmic procedure
(middle convolution and tensoring). Some questions:

I Classify unitary rigid local systems (image in U(`)). How
many are there? Assume that all local monodromies are nth
roots of unity. In general, all rigids land in a U(p, q),
p + q = `.

I Classify local systems with finite global monodromy (has
classical origins in the work of Schwarz). Obviously this is a
subset of the previous case (and is determined from it by
Galois conjugation).

Note that all local monodromies are nth roots of identity in the
rigid local system problem.



A rank 2 hypergeometric example from Schwarz’s list

z(1− z)w ′′ + (
1

2
− z)w ′ +

1

4
w = 0

which corresponds to the matrix equation (i =
√
−1)[

0 1
−1 0

] [
i 0
0 −i

] [
0 i
i 0

]
= I .

The global monodromy is a finite group (dihedral). It is hence also
unitary. All three matrices are conjugate, with eigenvalues i and
−i .



The multiplicative eigenvalue problem

Conjugacy classes in SU(n) are in 1− 1 correspondence with points
of the simplex
∆n = {a = (a1, . . . , an) | a1 ≥ · · · ≥ an ≥ a1 − 1,

∑n
j=1 aj = 0}

(The correspondence takes a to the conjugacy class of the diagonal
matrix with entries exp(2π

√
−1aj).

Define Pn(s) ⊂ ∆s
n to be the set of tuples ~a = (a1, a2, . . . , as) such

that there exist A1,A2, . . . ,As ∈ SU(n) with Ai in the conjugacy
class corresponding to ai , with A1A2 · · ·As = In ∈ SU(n).



Vertices

I Pn(s) parameterizes all tuples of local monodromies of rank n
special unitary local systems on P1 − S .

I Pn(s) is a compact polytope cut out by a finite set of
inequalities controlled by quantum Schubert calculus of
Grassmannians.

I Pn(s) is the quantum generalization of the Littlewood
Richardson cone controlling summands in the tensor products
of representations of SL(n).

Question: What are the vertices of Pn(s)? (They all correspond
to reducible local systems). Do they have any geometric structure,
and special significance? (Thaddeus, Agnes 2014 for a list).
Two types of vertices: Ones for which there is an essentially only
one solution to the matrix equation (“F-vertices”).



Vertices

There are trivial vertices:
∏

(ζmj I ) = I where ζ = exp(2πi/n) and
n divides

∑
mi .

The first example of a nontrivial-vertex: The following is a vertex
for n = 4 and |S | = 3:
diag(1, 1,−1,−1) diag(1,−1, 1,−1) diag(1,−1,−1, 1) = I4.

Theorem
Rigid (irreducible) local systems (arbitrary rank) which are unitary
with local monodromy of order dividing n are in one-one
correspondence with F - vertices of Pn(s).

This correspondence takes the rigid local system of rank 2 to the
above vertex (of a rank 4 problem).



Description of the correspondence

Let A = (A1, . . . ,As) correspond to a rank ` unitary rigid
(irreducible) local system (with local monodromy nth roots of
unity). Assume that the eigenvalues of Ai are exp(2π

√
−1µij/n)

with integers 0 ≤ µij < n, so that the µi = (µi1, . . . , µ
i
`) are Young

diagrams that fit in an `× n box.

Consider the vector of transpose Young diagrams ~λ = (λ1, . . . , λs)
with λi = (µi )T . Define points ai ∈ ∆n as follows (ci are chosen

to make the traces zero) ai = λi

` − ci (1, 1, . . . , 1).

The correspondence takes the local system A to the point
v(A) = ~a ∈ Pn(s).



An example

The example of the rank 2 rigid had all local monodromies
conjugate to diag(i ,−i). Take n = 4, and µ = (3, 1) a Young
diagram that fits into a 2× 4 box. Now take the transpose, we get
(2, 1, 1, 0). Therefore the a’s are all equal to (1/2, 0, 0,−1/2)
which corresponds to the diagonal matrix diag(1, 1,−1,−1).



Origin of the correspondence: Grassmann duality, or
strange duality

Let Par` be the moduli stack of rank ` parabolic bundles on P1

with parabolic structures at points of S . A gives a tuple of
representations of GL(`) at level n, thus a line bundle on Par`.
There exists an actual unitary local system with this local
monodromy data iff h0(Par`,L) 6= 0 (and quantum saturation,
ignoring determinant issues) .

I The transpose of the data gives a line bundle on Parn at level
` which is also effective (has space of sections dual to the one
in the previous paragraph).

I Explained by h0(Par`,L) = structure constant in cohomology
of Grassmannians Gr(n, n + `) and we use
Gr(n, n + `) = Gr(`, n + `) to get h0(Par`,L) = h0(Parn,LT )

All in all, the point A lies in P` iff the transposed point lies in
Pn(s). This last correspondence (extremely non-linear) takes the
vertex property on one side to the rigidity property on the other.



Some consequences

I There are only finitely many unitary (similarly finite) rigid local
systems (arbitrary rank) with local monodromies nth roots of
unity (since there are only finitely many vertices of Pn(s)).

I Any finite monodromy rigid local system with local
monodromies nth roots of unity has a special properties:
Eigenvalues at any point do not have ratios that are primitive
roots of unity. Hence there are no such local systems of rank
> 1 if n is prime (answers a question of Nick Katz).

The second property comes from viewing the corresponding line
bundle on the Pn(s) side. It is a natural degeneracy locus, and the
corresponding cycle class (computed enumeratively) has a special
non-adjacency property.



Work on determining vertices

The vertices of Pn(s) have been inductively determined: The set of
vertices on a regular face of Pn(s) has the following description
(this generalizes earlier work on the classical counterpart: Vertices
of the Klyachko cone, and joint work with Josh Kiers for arbitrary
groups)

I Some are given geometrically as natural enumerative loci on
Parn. (e.g., the locus of parabolic bundles which have a
subbundle with overdetermined number of conditions by 1 on
how their fibers look like)

I The rest arise from an explicit induction from Levi subgroups.



Questions

1. Generalize from U(n) to U(p, q) with p ≤ m.

2. Relations with Katz’s algorithm (which does not stay inside
the unitary world). Is there a way to run Katz’s algorithm
staying entirely inside unitary local systems?

3. Problems for other types: Strange duality accompanies
conformal embeddings of groups. Is there a generalization for
rigid G -local systems? Ongoing joint work with Josh Kiers on
the multiplicative eigenvalue problem for arbitrary type.


