Session 1

Tuesday, March 23

Time
Speaker

10:45-10:55	Semin Yoo, University of Rochester
10:55-11:05	Michael Perlman, Queen's University
11:05-11:15	Papri Dey, University of Missouri-Columbia
11:15-11:25	Aram Bingham, Tulane University of Louisiana
11:25-11:35	Yifeng Huang, University of Michigan

Combinatorics of quadratic spaces over finite fields

Semin Yoo
University of Rochester

Lightning Talk
Geometry and Combinatorics from Root Systems
March 23, 2021

Motivation

Recall. q - binomial coefficients

$$
\begin{aligned}
\binom{n}{k}_{q} & =\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \\
& =\text { the number of } k \text {-dimensional subspaces of } \mathbb{F}_{q}^{n} .
\end{aligned}
$$

Motivation

Recall. q-binomial coefficients

$$
\binom{n}{k}_{q}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

$=$ the number of k-dimensional subspaces of \mathbb{F}_{q}^{n}.

	Field with one element	\mathbb{F}_{q} (q -analogues)
object	$[n]=\{1,2, \cdots, n\}$	\mathbb{F}_{q}^{n}
subobject	a k set in [n]	a k-dimensional subspace of \mathbb{F}_{q}^{n}
bracket	n	the number of lines in \mathbb{F}_{q}^{n}
factorial	n !	$[n]_{q}$!
poset	B_{n}	$L_{n}(q)$
group	$\left\|S_{n}\right\|=n!$	$\|G L(n, q)\|=q^{n(n-1) / 2}(q-1)^{n}[n] q^{\prime}$!
flag	flags in [n]	flags in \mathbb{F}_{q}^{n}
binomial coefficient	$\binom{n}{k}=\frac{n!}{k!(n-k)!}=\left\|\frac{S_{n}}{S_{k} \times S_{n-k}}\right\|$	$\binom{n}{k}_{q}=\frac{[I]_{q}!}{[k]!(n-k)]_{q}!}=\left\|\frac{G L(n, q)}{\binom{A}{0}}\right\|$
connection	$\lim _{q \rightarrow 1}\binom{n}{k}_{q_{1}}=\binom{n}{k}$	

- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
■ Let us call k-dimensional quadratic subspace $W \subset\left(\mathbb{F}_{q}^{n}, Q\right)$ a $\boldsymbol{d o t}_{\mathrm{k}}$-subspace if $(W, Q \mid W) \simeq\left(\mathbb{F}_{q}^{k}, \operatorname{dot}_{k}\right)$.
- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
■ Let us call k-dimensional quadratic subspace $W \subset\left(\mathbb{F}_{q}^{n}, Q\right)$ a $\boldsymbol{d o t}_{\mathrm{k}}$-subspace if $(W, Q \mid W) \simeq\left(\mathbb{F}_{q}^{k}, \operatorname{dot}_{k}\right)$.
■ Main object: the number of dot_{k}-subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(x)\right)$.
- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
■ Let us call k-dimensional quadratic subspace $W \subset\left(\mathbb{F}_{q}^{n}, Q\right)$ a $\boldsymbol{d o t}_{\mathrm{k}}$-subspace if $(W, Q \mid W) \simeq\left(\mathbb{F}_{q}^{k}, \operatorname{dot}_{k}\right)$.
■ Main object: the number of dot_{k}-subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(x)\right)$.
■ This count gives us a new analogue of binomial coefficients, called the dot-binomial coefficients, $\binom{n}{k}_{d}$, which can be written as analogues of binomial coefficients.
- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
■ Let us call k-dimensional quadratic subspace $W \subset\left(\mathbb{F}_{q}^{n}, Q\right)$ a $\operatorname{dot}_{\mathrm{k}}$-subspace if $(W, Q \mid W) \simeq\left(\mathbb{F}_{q}^{k}, \operatorname{dot}_{k}\right)$.
■ Main object: the number of dot_{k}-subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(x)\right)$.
■ This count gives us a new analogue of binomial coefficients, called the dot-binomial coefficients, $\binom{n}{k}_{d}$, which can be written as analogues of binomial coefficients.
- We define dot-analogues as follows:
$[k]_{d}:=\mid \operatorname{dot}_{1}$-subspaces in $\operatorname{dot}_{k} \mid ;[n]_{d}!:=[n]_{d} \cdots[1]_{d}$; $\binom{n}{k}_{d}=\frac{[n]_{d}!}{\left.[k]_{d}![n-k)\right]_{d}!}$.
- Today, we are interested in the standard quadratic space $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}(\mathrm{x})\right)$, where $\operatorname{dot}_{n}(\mathrm{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
■ Let us call k-dimensional quadratic subspace $W \subset\left(\mathbb{F}_{q}^{n}, Q\right)$ a $\boldsymbol{d o t}_{\mathrm{k}}$-subspace if $(W, Q \mid W) \simeq\left(\mathbb{F}_{q}^{k}, \operatorname{dot}_{k}\right)$.
■ Main object: the number of dot_{k}-subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(x)\right)$.
■ This count gives us a new analogue of binomial coefficients, called the dot-binomial coefficients, $\binom{n}{k}_{d}$, which can be written as analogues of binomial coefficients.
- We define dot-analogues as follows:
$[k]_{d}:=\mid \operatorname{dot}_{1}$-subspaces in $\operatorname{dot}_{k} \mid ;[n]_{d}!:=[n]_{d} \cdots[1]_{d}$;
$\binom{n}{k}_{d}=\frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!}$.
- $\binom{n}{k}_{d}<\binom{n}{k}_{q}$.

Main Goal: Study related combinatorics of $\binom{n}{k}_{d}$ and its applications.

Theorem (Y., 2019, 2020+)

- $\binom{n}{k}_{d}$ can be written by the q-binomial coefficients. For example, when $q \equiv 1(\bmod 4)$, and n, k are odd,

$$
\begin{aligned}
\binom{n}{k}_{d} & =\frac{q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-1}{2}}+1\right)\left(q^{\frac{n-1}{2}}-1\right)\left(q^{\frac{n-3}{2}}+1\right) \cdots\left(q^{\frac{n-k+2}{2}}-1\right)\left(q^{\frac{n-k}{2}}+1\right)}{2\left(q^{\frac{k-1}{2}}+1\right)\left(q^{\frac{k-1}{2}}-1\right)\left(q^{\frac{k-3}{2}}+1\right) \cdots(q-1) \cdot 1} \\
& =\frac{1}{2} q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-k}{2}}+1\right)\binom{\frac{n-1}{2}}{\frac{k-1}{2}}_{q^{2}}
\end{aligned}
$$

Theorem (Y., 2019, 2020+)

- $\left.\binom{n}{k}\right)_{d}$ can be written by the q-binomial coefficients.

For example, when $q \equiv 1(\bmod 4)$, and n, k are odd,

$$
\begin{aligned}
\binom{n}{k}_{d} & =\frac{q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-1}{2}}+1\right)\left(q^{\frac{n-1}{2}}-1\right)\left(q^{\frac{n-3}{2}}+1\right) \cdots\left(q^{\frac{n-k+2}{2}}-1\right)\left(q^{\frac{n-k}{2}}+1\right)}{2\left(q^{\frac{k-1}{2}}+1\right)\left(q^{\frac{k-1}{2}}-1\right)\left(q^{\frac{k-3}{2}}+1\right) \cdots(q-1) \cdot 1} \\
& =\frac{1}{2} q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-k}{2}}+1\right)\binom{\frac{n-1}{2}}{\frac{k-1}{2}}_{q^{2}}
\end{aligned}
$$

- $\binom{n}{k}_{d}$ are polynomials of degree $k(n-k)$ in q.

Theorem (Y., 2019, 2020+)

- $\left.\binom{n}{k}\right)_{d}$ can be written by the q-binomial coefficients.

For example, when $q \equiv 1(\bmod 4)$, and n, k are odd,

$$
\begin{aligned}
\binom{n}{k}_{d} & =\frac{q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-1}{2}}+1\right)\left(q^{\frac{n-1}{2}}-1\right)\left(q^{\frac{n-3}{2}}+1\right) \cdots\left(q^{\frac{n-k+2}{2}}-1\right)\left(q^{\frac{n-k}{2}}+1\right)}{2\left(q^{\frac{k-1}{2}}+1\right)\left(q^{\frac{k-1}{2}}-1\right)\left(q^{\frac{k-3}{2}}+1\right) \cdots(q-1) \cdot 1} \\
& =\frac{1}{2} q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-k}{2}}+1\right)\binom{\frac{n-1}{2}}{\frac{k-1}{2}}_{q^{2}}
\end{aligned}
$$

- $\binom{n}{k}_{d}$ are polynomials of degree $k(n-k)$ in q.
- $|O(n, q)|=2^{n}[n]_{d}!$.

Theorem (Y., 2019, 2020+)

- $\binom{n}{k}_{d}$ can be written by the q-binomial coefficients.

For example, when $q \equiv 1(\bmod 4)$, and n, k are odd,

$$
\begin{aligned}
\binom{n}{k}_{d} & =\frac{q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-1}{2}}+1\right)\left(q^{\frac{n-1}{2}}-1\right)\left(q^{\frac{n-3}{2}}+1\right) \cdots\left(q^{\frac{n-k+2}{2}}-1\right)\left(q^{\frac{n-k}{2}}+1\right)}{2\left(q^{\frac{k-1}{2}}+1\right)\left(q^{\frac{k-1}{2}}-1\right)\left(q^{\frac{k-3}{2}}+1\right) \cdots(q-1) \cdot 1} \\
& =\frac{1}{2} q^{\frac{k(n-k)}{2}}\left(q^{\frac{n-k}{2}}+1\right)\binom{\frac{n-1}{2}}{\frac{k-1}{2}}_{q^{2}}
\end{aligned}
$$

- $\binom{n}{k}_{d}$ are polynomials of degree $k(n-k)$ in q.
- $|O(n, q)|=2^{n}[n]_{d}!$.

■ $\binom{n}{k}_{d}=\left|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right|=\left|G r_{d}(n, k)\right|<\left|G r_{q}(n, k)\right|=\binom{n}{k}_{q}$.

	q-analogues	dot-analogues
space	\mathbb{F}_{q}^{n}	$\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$
subspace	a k-dimensional subspace of \mathbb{F}_{q}^{n}	a dot ${ }_{k}$-subspace of dot ${ }_{n}$
bracket	the number of lines in \mathbb{F}_{q}^{n}	the number of spacelike lines in $\left(\mathbb{F}_{q}^{n}\right.$, dot $\left._{n}\right)$
factorial	$[n]_{q}!$	$[n]_{d}!$
poset	$L_{n}(q)$	$E_{n}(q)$
group	$\|G L(n, q)\|=q^{n(n-1) / 2}(q-1)^{n}[n]_{q}!$	$\|O(n, q)\|=2^{n}[n]_{d}!$
flag	flags in \mathbb{F}_{q}^{n}	Euclidean flags in $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$
binomial coefficient	$\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![(n-k)]_{q}!}=\left\|\frac{G L(n, q)}{\left(\begin{array}{ll}A & C \\ 0 & B\end{array}\right)}\right\|$	$\binom{n}{k}_{d}=\frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!}=\left\|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right\|$

Table: The q-analogues and the dot-analogues (Y., 2019+).

	q-analogues	dot-analogues
space	\mathbb{F}_{q}^{n}	$\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$
subspace	a k-dimensional subspace of \mathbb{F}_{q}^{n}	a dot ${ }_{k}$-subspace of dot ${ }_{n}$
bracket	the number of lines in \mathbb{F}_{q}^{n}	the number of spacelike lines in $\left(\mathbb{F}_{q}^{n}\right.$, dot $\left.{ }_{n}\right)$
factorial	$[n]_{q}!$	$[n]_{d}!$
poset	$L_{n}(q)$	$E_{n}(q)$
group	$\|G L(n, q)\|=q^{n(n-1) / 2}(q-1)^{n}[n]_{q}!$	$\|O(n, q)\|=2^{n}[n]_{d}!$
flag	flags in \mathbb{F}_{q}^{n}	Euclidean flags in $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$
binomial coefficient	$\binom{n}{k}_{q}=\frac{[n]_{q}!}{\left.[k]_{q}!(n-k)\right]_{q}!}=\left\|\frac{G L(n, q)}{\left(\begin{array}{ll}A & C \\ 0 & B\end{array}\right)}\right\|$	$\binom{n}{k}_{d}=\frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!}=\left\|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right\|$

Table: The q-analogues and the dot-analogues (Y., 2019+).

Question.

Recall $\lim _{q \rightarrow 1}\binom{n}{k}_{q}=\binom{n}{k}$ gives a connection between $\binom{n}{k}_{q}$ and $\binom{n}{k}$.
Question. $\lim _{q \rightarrow 1}\binom{n}{k}_{d}=$?

Recall $\lim _{q \rightarrow 1}\binom{n}{k}_{q}=\binom{n}{k}$ gives a connection between $\binom{n}{k}_{q}$ and $\binom{n}{k}$.
Question. $\lim _{q \rightarrow 1}\binom{n}{k}_{d}=$?
Definition
A set A is called symmetric in $\mathbb{Z} /(n+1) \mathbb{Z}$ if $A=-A$ and $0 \notin A$.

Recall $\lim _{q \rightarrow 1}\binom{n}{k}_{q}=\binom{n}{k}$ gives a connection between $\binom{n}{k}_{q}$ and $\binom{n}{k}$.
Question. $\lim _{q \rightarrow 1}\binom{n}{k}_{d}=$?
Definition
A set A is called symmetric in $\mathbb{Z} /(n+1) \mathbb{Z}$ if $A=-A$ and $0 \notin A$.
Theorem (Y., 2020+)
$\lim _{q \rightarrow \pm 1}\binom{n}{k}_{d}$ is the number of symmetric k-sets in $\mathbb{Z} /(n+1) \mathbb{Z}$.

Recall $\lim _{q \rightarrow 1}\binom{n}{k}_{q}=\binom{n}{k}$ gives a connection between $\binom{n}{k}_{q}$ and $\binom{n}{k}$.
Question. $\lim _{q \rightarrow 1}\binom{n}{k}_{d}=$?

Definition

A set A is called symmetric in $\mathbb{Z} /(n+1) \mathbb{Z}$ if $A=-A$ and $0 \notin A$.
Theorem (Y., 2020+)
$\lim _{q \rightarrow \pm 1}\binom{n}{k}_{d}$ is the number of symmetric k-sets in $\mathbb{Z} /(n+1) \mathbb{Z}$.
Questions.

- Combinatorial descriptions of $\binom{n}{k}$?
- Analogues of binomial theorem?

References

Pete L. ClarkQuadratic forms chapter I: Witt's theory
http://math.uga.edu/~pete/quadraticforms.pdf
国
Semin Yoo (2019+)
Combinatorics of quadratic spaces over finite fields
Preprint

Thank you for your attention!

MIXED HODGE STRUCTURE

 ON LOCAL COHOMOLOGY

 ON LOCAL COHOMOLOGY}

WITH SUPPORT IN

DETERMINANTAL VARIETIES

MICHAEL PERLMAN (QUEEN'S UNIVERSITY)
MP174@quEENSU.CA

SETTING:

- $X=$ smooth complex variety
- $Z \subseteq X$ closed subvariety

$$
\text { - } H_{z}^{j}\left(O_{x}\right)=\frac{\text { local cohomology }}{\text { with support in } Z}
$$

EXAMPLE: $z=$ hyper surface

$$
H_{z}^{\prime}\left(\theta_{x}\right)=\frac{\bigcup_{k \geq 0} O_{x}(k z)}{O_{x}}
$$

GOAL: Understand how $H_{z}^{j}\left(O_{x}\right)$ detects/measores slagulentics of Z.

FACT: They are mixed Hodge modules (Sarto) \Rightarrow two increasing filtra tons
(1) Hodge filtration F_{0}, infinite filtration coherent \hat{O}_{x}-modules (\log resolutions)
(2) Weight fol fration W_{0}, finite filtration by D_{X}-modules, semi-simple quotients

SPECIAL CASE: $Z=$ hypersurface

$$
F_{K} H_{Z}^{\prime}\left(\theta_{x}\right) \Leftrightarrow \frac{\text { Hodge ideals }}{I_{K}(Z) \leq O_{x}}(\text { Mustatä-Popa) }
$$

Defect smooth, \log canonical, rational sing

$$
\left(I_{k}(z)=O_{x}\right),\left(I_{0}(z)=O_{x}\right),\left(I_{1}(z)=O_{x}\right)
$$

THM (P.-Raicu'20): $Z=V(\operatorname{det}) \subseteq \mathbb{C}^{n \times n}$. $I_{K}(z)=\bigcap_{p}^{n-1} J_{p}^{\left((n-p)(K-1)-\binom{n-p}{2}\right)}$

$$
P=1
$$

determuctal ideal pep minors

REMARKS:

- $I_{0}(z)=I_{1}(z)=O_{x} \Rightarrow$ rational sing
- $I_{2}(Z)=J_{n-1}$

TECHNIQUES:

Rep theory GLun(C), equivariant D-modules

- Do it WiTHout log resolution
$\operatorname{THM}\left(P-R a c n^{\prime} 20, P P^{\prime} 21\right): Z_{p}=\{$ rank $\subseteq p\} \subseteq \mathbb{C}^{m \times n}$.
Calculate

$$
F_{\cdot} \mathcal{H}_{z_{p}}^{\bullet}\left(\vartheta_{x}\right), W_{0} \mathcal{H}_{z_{p}}^{\bullet}\left(\vartheta_{x}\right)
$$

Weight of D_{x}-simple factor depends only on its support and cohom. deg.
FUTURE WORK:
(1) Hodge ideals, mixed Hodge structure on other spaces with finitely many orbits
(2) Connections with motivic chern classes (Brasselet-Schürmenn-Yokra).

- Determnental case known: [Fehér-Rimány1-Weler '19]

Geometric and Combinatorial aspects of Nonlinear Algebra

Papri Dey

Department of Mathematics
University of Missouri, Columbia

ICERM Fall 2021 CAG:March 23, Lightning Talk

University of Missouri, Columbia

\circledast

Nonlinear Algebra-Papri Dey

Three Objectives

1. Computational Aspects
2. Applications
3. Develop mathematical theory and algorithms

Convex polytope and Algebraic Geometry

Algebraic Torus $\left(\mathbb{C}^{*}\right)^{n} \leftrightarrow \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$Laurent Polynomials
Notation: $\quad \mathbf{x}^{\alpha} \rightarrow x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \quad \alpha=\left(\alpha_{1} \ldots \alpha_{n}\right) \in \mathbb{Z}^{n}$
Newton Polytope of $f(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}\left[\mathbf{x}^{ \pm}\right]$: The convex hull of the finite set $\left\{\alpha: c_{\alpha} \neq 0\right\}$. Convex polytope with vertices in \mathbb{Z}^{n}.
$\mathcal{A}=\left\{\alpha_{0}, \ldots, \alpha_{s}\right\} \subset \mathbb{Z}^{n} \rightarrow \mathcal{L}_{\mathcal{A}}=\left\{f(\mathbf{x})=\sum_{i=0}^{s} c_{i} \mathbf{x}^{\alpha_{i}}: \alpha_{i} \in \mathcal{A}, c_{i} \in \mathbb{C}, \forall i\right\}$
The convex hull of \mathcal{A} is the Newton polytope of a generic element of $\mathcal{L}_{\mathcal{A}}$, denoted as

$$
\triangle_{\mathcal{A}} .
$$

BKK

For a generic choice of $f_{1}, \ldots, f_{n} \in \mathcal{L}_{\mathcal{A}}$, the number of solutions in $\left(\mathbb{C}^{*}\right)^{n}$ of the system $f_{1}(\mathbf{x})=\cdots=f_{n}(\mathbf{x})=0$ is the same, and is equal to $n!\operatorname{vol}\left(\triangle_{\mathcal{A}}\right)$

Toric variety and Convex polytope

Due to Khovanskii...one of the references is Escobar and Kaveh 2020... Consider the map $\psi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C} \mathbb{P}^{s}$ such that $\mathbf{x} \mapsto\left(\mathbf{x}^{\alpha_{0}}: \cdots: \mathbf{x}^{\alpha_{s}}\right)$,

$$
T_{\mathcal{A}}:=\psi_{\mathcal{A}}\left(\mathbb{C}^{*}\right)^{n} \cong\left(\mathbb{C}^{*}\right)^{n}, \text { provided the differences of elements of } \mathcal{A} \text { generate } \mathbb{Z}^{n}
$$

The toric variety $X_{\mathcal{A}}$ is the closure of the image of the map $\psi_{\mathcal{A}}$ in $\mathbb{C P}^{s}$.

- The torus $\left(\mathbb{C}^{*}\right)^{n}$ acts on $\mathbb{C P}^{s}$ by $\mathbf{x}\left(z_{0}: \cdots: z_{s}\right)=\left(\mathbf{x}^{\alpha_{0}} z_{0}: \cdots: \mathbf{x}^{\alpha_{s}} z_{s}\right)$
- the variety $X_{\mathcal{A}}$ is the closure of the orbit of $(1: \cdots: 1)$.

The degree of $X_{\mathcal{A}} \subset \mathbb{C P}^{s}$ is equal to $n!\operatorname{vol}\left(\triangle_{\mathcal{A}}\right)$

Moment Map: $\mu_{\mathcal{A}}: X_{\mathcal{A}} \rightarrow \triangle_{A}$.
$\mu_{\mathcal{A}}: \mathbb{C P}^{s} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\left(z_{0}: \cdots: z_{s}\right) \mapsto \sum_{i=0}^{s}\left(\frac{\left|z_{i}\right|^{2}}{\sum_{j=0}^{s}\left|z_{j}\right|^{2}}\right) \alpha_{i} \in \triangle_{\mathcal{A}}
$$

- $\mu_{\mathcal{A}}$ is invariant under the action of $\left(\mathbb{C}^{*}\right)^{n}$
- $\mu_{\mathcal{A}}\left(\mathbb{C P}^{s}\right)=\mu_{\mathcal{A}}\left(X_{\mathcal{A}}\right)=\triangle_{\mathcal{A}}$

Permutohedron and Associahedron

- The flag variety $F_{n}:\{0\}=V_{0} \subsetneq V_{1} \subsetneq \ldots V_{n}=\mathbb{C}^{n} \leftrightarrow M \in G L(n, \mathbb{C}), V_{i}=$ the row span of the top i rows of M
- Plucker Coordinates of the subspace $V_{i}:\left(p_{I}(M):|I|=i\right) \in \mathbb{C P}\left({ }^{\binom{n}{i}-1}, 1 \leq i \leq n\right.$
- F_{n} : A projective variety in $\mathbb{C P}\binom{n}{1}-1 \times \cdots \times \mathbb{C P}^{\binom{n}{n-1}-1}$
- The torus $\left(\mathbb{C}^{*}\right)^{n}$: the group \mathcal{D} of invertible diagonal $n \times n$ matrices.
- F_{n} is a \mathcal{D}-invariant subvariety-moment map.
- The image of this map is the permutohedron P_{n}.

- The Associahedron
- The Catalan Number

Generealization:Newton-Okounkov body

Numerical Semigroup: Principal Matrix and Frobenius number

- The Semigroup $S=\langle\mathbf{a}\rangle$ generated by $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ of positive integers.
- When $\left(a_{1}, \ldots, a_{n}\right)=1$, the semigroup $\langle\mathbf{a}\rangle$ is called a numerical semigroup
- Consider the k-algebra homomorphism $\phi_{\mathbf{a}}: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow k[t]$ given by $\phi_{\mathbf{a}}\left(x_{i}\right)=t^{a_{i}}$.
- The image of this map $\phi_{\mathbf{a}}$ is the semigroup ring $k[\mathbf{a}]$
- $k[\mathbf{a}]=K\left[x_{1}, \ldots, x_{n}\right] / I_{\mathrm{a}}$ where $\operatorname{ker} \phi_{\mathbf{a}}=I(\mathbf{a})$.
- The I_{a} is the toric ideal of $k[\mathbf{a}]$.
- Since $\left(a_{1}, \ldots, a_{n}\right)=1$, there exists a smallest integer $r_{i}>0$ such that $r_{i} a_{i}=\sum_{j \neq i} r_{i j} a_{j}$ for all $i=1, \ldots, n$.
- The $n \times n$ matrix $D(\mathbf{a}):=\left(r_{i j}\right)$ where $r_{i i}:=-r_{i}$ is called a principal matrix associated to \mathbf{a}.
- there is a number f such that $x>f \rightarrow x \in S$, a numerical semigroup. This number f is called the Frobenius number.
- f is the largest positive integer not in S .
- The semigroup S is symmetric if for all $x<f, x \in S$ if and only if $f-x \notin S$.

Clans, sects, and symmetric space closure orders
 (joint with Mahir Can \& Özlem Uğurlu)

Aram Bingham

T. U. Louisiana

ICERM Workshop
Geometry and Combinatorics from Root Systems
March 23, 2021

Symmetric Spaces

G, a connected reductive complex linear algebraic group (subgroup of $G L_{n}(\mathbb{C})$).

Definition

If θ is an automorphism of G of order 2 with $L=G^{\theta}$ the fixed-point subgroup, then we call G / L a symmetric space, and L a symmetric subgroup.

Theorem (Matsuki, '79)

A Borel subgroup of G acts on a symmetric space G / L with finitely many orbits. (Symmetric spaces are spherical varieties.)

For simple G, classification corresponds to classification of real forms of simple Lie algebras (Cartan).
Those of Hermitian type come in four infinite families of pairs (G, L)

Symmetric Spaces

G, a connected reductive complex linear algebraic group (subgroup of $G L_{n}(\mathbb{C})$).

Definition

If θ is an automorphism of G of order 2 with $L=G^{\theta}$ the fixed-point subgroup, then we call G / L a symmetric space, and L a symmetric subgroup.

Theorem (Matsuki, '79)

A Borel subgroup of G acts on a symmetric space G / L with finitely many orbits. (Symmetric spaces are spherical varieties.)

For simple G, classification corresponds to classification of real forms of simple Lie algebras (Cartan).
Those of Hermitian type come in four infinite families of pairs (G, L):
(1) Type AIII: $\left(S L_{p+q}, S\left(G L_{p} \times G L_{q}\right)\right)$
 (2) Type CI: $\left(S p_{2 n}, G L_{n}\right)$

(3) Type DIII: $\left(S O_{2 n}, G L_{n}\right)$
(4) Type BDI: $\left(\mathrm{SO}_{n}, \mathrm{SO}_{2} \times S O_{n-2}\right)$ ${ }^{* * *}$ In these cases, $P=L \ltimes R_{u}(P)$ for P parabolic $\rightsquigarrow G / P$ is a Grassmannian! ${ }^{* * *}$

Inclusion

Type	Symmetric Pair	B-orbits parametrized by	G / P
AIII	$\left(S L_{p+q}, S\left(G L_{p} \times G L_{q}\right)\right)$	(p, q)-clans	$\mathrm{Gr}_{p}\left(\mathbb{C}^{p+q}\right)$
$C I$	$\left(S p_{2 n}, G L_{n}\right)$	skew-symmetric (n, n)-clans	$\Lambda(n)$
DIII	$\left(S O_{2 n}, G L_{n}\right)$	$D I I I(n, n)$-clans	$\mathrm{OGr}_{n}\left(\mathbb{C}^{2 n}\right)$

$\{$ DIII (n, n)-clans $\} \hookrightarrow$ skew-symmetric (n, n)-clans $\} \hookrightarrow\{(n, n)$-clans $\}$

\square the type AIII closure order?

Inclusion

Type	Symmetric Pair	B-orbits parametrized by	G / P
AIII	$\left(S L_{p+q}, S\left(G L_{p} \times G L_{q}\right)\right)$	(p, q)-clans	$\mathrm{Gr}_{p}\left(\mathbb{C}^{p+q}\right)$
$C I$	$\left(S p_{2 n}, G L_{n}\right)$	skew-symmetric (n, n)-clans	$\Lambda(n)$
DIII	$\left(S O_{2 n}, G L_{n}\right)$	$D I I I(n, n)$-clans	$\mathrm{OGr}_{n}\left(\mathbb{C}^{2 n}\right)$

$\{$ DIII (n, n)-clans $\} \hookrightarrow$ sskew-symmetric (n, n)-clans $\} \hookrightarrow\{(n, n)$-clans $\}$

Definition (Matsuki-Oshima '90, Yamamoto '97)

An (n, n)-clan is a string of $2 n$ symbols, which are either,+- , or a natural number, such that:

1. If a number appears in the string then it must appear exactly twice.
2. There are the same number of + and - symbols.

Example/clarification: We consider $+1212-$ the same $(3,3)$-clan as $+2121-$.
the type AIII closure order?

Inclusion

Type	Symmetric Pair	B-orbits parametrized by	G / P
AIII	$\left(S L_{p+q}, S\left(G L_{p} \times G L_{q}\right)\right)$	(p, q)-clans	$\mathrm{Gr}_{p}\left(\mathbb{C}^{p+q}\right)$
$C I$	$\left(S p_{2 n}, G L_{n}\right)$	skew-symmetric (n, n)-clans	$\Lambda(n)$
DIII	$\left(S O_{2 n}, G L_{n}\right)$	$D I I I(n, n)$-clans	$\mathrm{OGr}_{n}\left(\mathbb{C}^{2 n}\right)$

$\{$ DIII (n, n)-clans $\} \hookrightarrow$ \{skew-symmetric (n, n)-clans $\} \hookrightarrow\{(n, n)$-clans $\}$

Definition (Matsuki-Oshima '90, Yamamoto '97)

An (n, n)-clan is a string of $2 n$ symbols, which are either,+- , or a natural number, such that:

1. If a number appears in the string then it must appear exactly twice.
2. There are the same number of + and - symbols.

Example/clarification: We consider $+1212-$ the same $(3,3)$-clan as $+2121-$. Question: When is a symmetric space closure order equal to the restriction of the type AIII closure order?

Hermitian-type symmetric space closure order

We have two natural projection maps

$$
\begin{gathered}
G / P \stackrel{\pi}{\overleftarrow{~(})} G / L \xrightarrow{\pi^{-}} G / P^{-} \\
\left(P^{-} \text {is "opposite" parabolic, } L=P \cap P^{-} .\right)
\end{gathered}
$$

> Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17) 1. images of orbits in G / P and in G / P^{-}("sects"), 2. the underlying involution associated to a clan (set of orthogonal roots) Example: Clan $\gamma=+1212-$ has underlying involution $\sigma_{\gamma}=\binom{2}{4}(35)$

Combinatorial gadgets

1. Compare images in G / P and G / P^{-}by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C)

Hermitian-type symmetric space closure order

We have two natural projection maps

$$
\begin{gathered}
G / P \stackrel{\pi}{\overleftarrow{~(}} G / L \xrightarrow{\pi^{-}} G / P^{-} \\
\left(P^{-} \text {is "opposite" parabolic, } L=P \cap P^{-} .\right)
\end{gathered}
$$

Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17):

1. images of orbits in G / P and in G / P^{-}("sects"),
2. the underlying involution associated to a clan (set of orthogonal roots). Example: Clan $\gamma=+1212-$ has underlying involution $\sigma_{\gamma}=(24)(35)$.

Hermitian-type symmetric space closure order

We have two natural projection maps

$$
\begin{gathered}
G / P \underset{\leftarrow}{\overleftarrow{\pi}} G / L \xrightarrow{\pi^{-}} G / P^{-} \\
\left(P^{-} \text {is "opposite" parabolic, } L=P \cap P^{-} .\right)
\end{gathered}
$$

Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17):

1. images of orbits in G / P and in G / P^{-}("sects"),
2. the underlying involution associated to a clan (set of orthogonal roots). Example: Clan $\gamma=+1212-$ has underlying involution $\sigma_{\gamma}=(24)(35)$.

Combinatorial gadgets

1. Compare images in G / P and G / P^{-}by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C).

so in this case $\sigma \leq \rho$ because

Hermitian-type symmetric space closure order

We have two natural projection maps

$$
G / P \stackrel{\pi}{\leftrightarrows} G / L \xrightarrow{\pi^{-}} G / P^{-}
$$

$$
\text { (} P^{-} \text {is "opposite" parabolic, } L=P \cap P^{-} \text {.) }
$$

Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17):

1. images of orbits in G / P and in G / P^{-}("sects"),
2. the underlying involution associated to a clan (set of orthogonal roots). Example: Clan $\gamma=+1212-$ has underlying involution $\sigma_{\gamma}=(24)(35)$.

Combinatorial gadgets

1. Compare images in G / P and G / P^{-}by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C).

Example: $\sigma=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \xrightarrow{R(\sigma)}\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 1\end{array}\right], \rho=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \xrightarrow{R(\rho)}\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 2 \\ 1 & 1 & 1\end{array}\right]$,
so in this case $\sigma \leq \rho$ because each entry of $R(\sigma)$ is \leq that of $R(\rho)$.

Example and result

For clans, $\gamma \leq \tau$ if and only if...

1. $\pi(\gamma) \leq \pi(\tau)$ in G / P
2. $\pi^{-}(\gamma) \leq \pi^{-}(\tau)$ in G / P^{-}
3. for involutions, $\sigma_{\gamma} \leq \sigma_{\tau}$.
(associated lattice path lies weakly below),
(associated lattice path lies weakly above),

Theorem, (B., '20)

The Bruhat order on the type Cl symmetric space is the restriction of the Bruhat order on the type AIII symmetric space to the skew-symmetric clans.

Remark: DIII fails to restrict at the Weyl group level, comparing involutions.

Thank You!

Inclusion order on Borel orbit closures in $S L_{4} / L_{2,2}$.

Bruhat order on Schubert cells in $\operatorname{Gr}(2,4)$.

A generating function for counting mutually annihilating matrices over a finite field

Yifeng Huang
University of Michigan

Mar. 23, 2021

Main Result

Theorem (H.) Let \mathbb{F}_{q} be the finite field of q elements, $\operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ denote the set of $n \times n$ matrices over \mathbb{F}_{q}, and $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ the set of invertible matrices therein. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\left\{A, B \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right): A B=B A=0\right\}\right|}{\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|} z^{n} \\
&=\left((1-z)\left(1-q^{-1} z\right)\left(1-q^{-2} z\right) \ldots\right)^{-2} H_{q}(z)
\end{aligned}
$$

where $H_{q}(z)$ is a power series in z with infinite radius of convergence.
Techniques of the proof: Counting is easy. The factorization uses standard q-series identities involving Young diagrams and Durfee squares. $H_{q}(z)$ can be written down explicitly.

Geometric picture

Such generating functions correspond to affine \mathbb{F}_{q}-varieties in a systematic way:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left|\left\{A, B \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right): A B=B A=0\right\}\right|}{\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|} z^{n} \rightsquigarrow\{(x, y): x y=0\} \\
& \left((1-z)\left(1-q^{-1} z\right)\left(1-q^{-2} z\right) \ldots\right)^{-1}=\sum_{n=0}^{\infty} \frac{\left|\operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)\right|}{\left|\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right|} z^{n} \rightsquigarrow \mathbb{A}_{\mathbb{F}_{q}}^{1}
\end{aligned}
$$

If we denote the generating function associated to a variety X by $\widehat{Z}_{X}(z)$, then the main result can be restated as

$$
\frac{\widehat{Z}_{\{x y=0\}}(z)}{\widehat{Z}_{\text {(two lines) }}(z)} \text { is an entire function. }
$$

Conjecture

Conjecture (informal)

The fact that $\{$ two disjoint lines $\}$ is a resolution of singularity of $\{x y=0\}$ is the geometric reason behind the main result.

Conjecture (formal)
Let X be any curve over \mathbb{F}_{q} with only planar singularities, and assume \widetilde{X}
is a resolution of singularity of X. Then $\frac{\widehat{Z}_{X}(z)}{\widehat{Z}_{\tilde{X}}(z)}$ is entire in z.
We remark that the question only depends on the type of the singularity. The main result implies the conjecture holds for nodes.

This phenomenon is seen for the generating function of Hilbert schemes (Göttsche-Shende '14, Refined curve counting on complex surfaces).

Other open questions

Even in the main result, the holomorphic factor $H_{q}(z)$ is explicit, its behavior is still mysterious.

- Can it be further factorized? (Most likely no, but maybe there is a natural weaker question to ask.)
- Does it have an "almost" functional equation?

Here are the observed data for the zeros of $H_{q}(z)$:

- There seem to be infinitely many zeros, namely, z_{1}, z_{2}, \ldots in first quadrant, and their complex conjugates.
- $z_{n+1} \approx q z_{n}$, and $\left|z_{n}\right| \approx q^{n-\frac{1}{2}}$. For $q=4$,

$$
\begin{array}{ll}
z_{1}=0.41614+1.72467 i, & \\
z_{2}=1.65483+7.60611 i, & \\
z_{3}=6.62192+31.08907 i, & \left|z_{2}\right|=7.78405<8=31.7865<32=q^{3 / 2} \\
z_{4}=26.4883+125.0116 i, & \\
z_{4} \mid=127.787<128=q^{5 / 2} \\
7 / 2
\end{array}
$$

Thank you!

