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H Field with one element ‘ Fq (g-analogues)
object [n]={1,2,--- ,n} Fy
subobject a k set in [n] a k-dimensional subspace of Iy
bracket n the number of lines in Fg
factorial n! [n],!
poset B, Ln(q)
group |Sp| = n! |GL(n, q)| = ¢"""D/2(q —1)" [n]!
flag flags in [n] flags in Fg
binomial coefficient || () = Wlk)' = ﬁ (Z)q = [k]q![[gi!k)]q! = ‘(;%'zq))
connection limg_1 (Z)q =) e
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m Today, we are interested in the standard quadratic space
(Fg,dotn(x)), where dot(x) = X2+ X2

m Let us call k-dimensional quadratic subspace W C (Fg, Q) a
dot,-subspace if (W, Q|w) ~ (F¥, doty).
m Main object: the number of dotk-subspaces of (IFf, dot(x)).

m This count gives us a new analogue of binomial coefficients,

called the dot-binomial coefficients, (Z)d, which can be

written as analogues of binomial coefficients.

m We define dot-analogues as follows:
[k]4 := |doti-subspaces in dotgl; [n]4! == [n]a - - [1]4;

n nly4!
(Do = matemm
u (Z)d < (Z)q

Main Goal: Study related combinatorics of (Z)
and its applications.

d
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Theorem (Y., 2019, 2020+)

] (Z)d can be written by the qg-binomial coefficients.

For example, when ¢ =1 (mod 4), and n, k are odd,

k(n—k) n—3 n—k+2 n—k
(n) i Jrl)(qr2 —1)(612 t1---(g 2 —1)(g2 +1)
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m (), are polynomials of degree k(n — k) in q.
. 10(m, 0)] = 2 [l

" (D)o = |owaslrzs| = 16ra(n, K| < Gra(m, k)| = (3),,
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g-analogues

dot-analogues

space Fa (Fg, doty)
subspace a k-dimensional subspace of Fg a doty-subspace of dot,

bracket the number of lines in Fg the number of spacelike lines in (FZ, dot,)
factorial [n],! [n]4!

poset Ln(q) E.(q)

group GL(n, q)| = """ D72(q — 1)" [n],! 10(n, g)[ = 2"[n],!

flag flags in Fp Euclidean flags in (IFg,dot,)

. . . . ! GL(n, _ ! _ o(n,
binomial coefficient 0= m = (6‘(’:;)) (Bg= [k]dy[[&],ik)]d! = ‘O(k,q)x(’(])?g—k,q)

Table: The g-analogues and the dot-analogues (Y., 2019+).
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Recall limg_y1 (Z)q = (}) gives a connection between (Z)q and (7).

Question. limg_1 (}), =7

Definition
A set A is called symmetric in Z/(n+ 1)Z if A= —A and 0 ¢ A.

Theorem (Y., 2020+)

limg—+1 (Z)d is the number of symmetric k-sets in Z./(n + 1)Z.

Questions.
m Combinatorial descriptions of (}) ,?
m Analogues of binomial theorem?
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Thank you for your attention!
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Nonlinear Algebra-Papri Dey

Algebraic Geometry 2%2’1;::tatlve

—"

Algebra Tensors and
/ Beomtry Multilinear
Convex and Combinatorics Algebra
Discrete
Geometry /
Representation Symbolic and Numerical
Theory Computation

Three Objectives

1. Computational Aspects

2. Applications

3. Develop mathematical theory and

algorithms 276



Convex polytope and Algebraic Geometry

Algebraic Torus (C*)" «» (C[xli, . ,x,,i] Laurent Polynomials

Notation:  x* = x"'...x", a=(a1...qn) €Z"
Newton Polytope of f(x) = 3°_, cax® € C[x*]: The convex hull of the finite set {c : co 7 0}.

Convex polytope with vertices in Z".

A={ap,...,o5} CZ" = La={f(x) =3 _jcx¥ :a; € A, ¢; € C,Vi}

The convex hull of A is the Newton polytope of a generic element of £ 4, denoted as
|

Ja € L 4, the number of solutions in (C*)" of the system
fi(x) = -+ = fu(x) = 0 is the same, and is equal to n!vol(A 4)

For a generic choice of fi, . . .
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Toric variety and Convex polytope

Due to Khovanskii...one of the references is Escobar and Kaveh 2020...
Consider the map 14 : (C*)" — CP* such that x — (x*0 : - -+ : X)),

T4 =14 (C*)" = (C")", provided the differences of elements of A generate Z"

The toric variety X 4 is the closure of the image of the map 1) 4 in CP”.

o The torus (C*)" acts on CP* by x(z0 : -+ : z5) = (X*0z0 : -+ : X*z)
@ the variety X 4 is the closure of the orbit of (1 :---: 1).
The degree of X4 C CP’ is equal to nlvol(A 4) J

Moment Map: 4 : X4 — Da.
pa : CP° — R" is defined by

s 2
(ZO:"':ZS)’—)Z<ZSZI||ZZ)OH'GAA
— =0 1%

@ L4 is invariant under the action of (C*)"

0 pa(CP) = pa(Xa) = Aa
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Permutohedron and Associahedron

o The flag variety F,: {0} =Vo C Vi C ...V, =C"+< M € GL(n,C),V;
the row span of the top i rows of M

n
o Plucker Coordinates of the subspace V;: (p;(M) : |I| =i) € (C]P’(i)_l, 1<i<n
F,: A projective variety in (CIP’(I)f1 X oo X (CIP’(nfl)fl
The torus (C*)": the group D of invertible diagonal n X n matrices.

F, is a D-invariant subvariety-moment map.

The image of this map is the permutohedron P,,.

A, (albg)d

" a((ba)d)|

°' a(b(ed)) ((ab)e)d
\" (ablie)

@ The Associahedron

@ The Catalan Number

Generealization:Newton-Okounkov body
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Numerical Semigroup: Principal Matrix and Frobenius number

The Semigroup S = (a) generated by a = {ai, ..., a,} of positive integers.

When (ai, . ..,a,) = 1, the semigroup (a) is called a numerical semigroup

Consider the k-algebra homomorphism ¢a : K[x1, ..., x,] — k[f] given by ¢a(x;) = 1“.
The image of this map ¢, is the semigroup ring k[a]

k[a] = K[x1,...,xs]/Ia where ker ¢y = I(a).

The I, is the toric ideal of k[a].

Since (a1, ..., an) = 1, there exists a smallest integer r; > 0 such that ria; = 3_; ryja; for
alli=1,....n.

The n x n matrix D(a) := (r;) where r;; := —r; is called a principal matrix associated to a.

there is a number f such that x > f — x € §, a numerical semigroup. This number f is
called the Frobenius number.

o f is the largest positive integer not in S.

The semigroup S is symmetric if for all x < f, x € Sif and only if f — x ¢ S.
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Symmetric Spaces

G, a connected reductive complex linear algebraic group (subgroup of GL,(C)).

Definition

If 6 is an automorphism of G of order 2 with L = G? the fixed-point subgroup,
then we call G/L a symmetric space, and L a symmetric subgroup.

Theorem (Matsuki, '79)

A Borel subgroup of G acts on a symmetric space G/L with finitely many orbits.
(Symmetric spaces are spherical varieties.)

For simple G, classification corresponds to classification of real forms of simple
Lie algebras (Cartan).
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Symmetric Spaces

G, a connected reductive complex linear algebraic group (subgroup of GL,(C)).

Definition

If 6 is an automorphism of G of order 2 with L = G? the fixed-point subgroup,
then we call G/L a symmetric space, and L a symmetric subgroup.

Theorem (Matsuki, '79)

A Borel subgroup of G acts on a symmetric space G/L with finitely many orbits.
(Symmetric spaces are spherical varieties.)

For simple G, classification corresponds to classification of real forms of simple
Lie algebras (Cartan).

Those of Hermitian type come in four infinite families of pairs (G, L):

(1) Type Alll: (SLpiq, S(GLp X GLg)) +———— (2) Type CI: (Span, GL,)

’[ embeddings

(3) Type Dill: (SO2y, GL,) (4) Type BDI: (50,50, x S0,-5)
**% In these cases, P = L x R,(P) for P parabolic ~~ G/P is a Grassmannian!***
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Inclusion

Type Symmetric Pair B-orbits parametrized by G/P
Alll - (SLp+q, S(GL, x GLg)) (p, g)-clans Grp(CPt9)
Cl (Sp2n. GL,) skew-symmetric (n, n)-clans A(n)
DIl (503, GL,) DIl (n, n)-clans OGr,(C2m)

{DIll (n, n)-clans} < {skew-symmetric (n, n)-clans} < {(n, n)-clans}
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Inclusion

Type Symmetric Pair B-orbits parametrized by G/P
Alll - (SLp+q, S(GL, x GLg)) (p, g)-clans Grp(CPt9)
Cl (Sp2n. GL,) skew-symmetric (n, n)-clans A(n)
DIl (503, GL,) DIl (n, n)-clans OGr,(C2m)

{DIll (n, n)-clans} < {skew-symmetric (n, n)-clans} < {(n, n)-clans}

Definition (Matsuki-Oshima '90, Yamamoto '97)

An (n, n)-clan is a string of 2n symbols, which are either 4+, —, or a natural
number, such that:

1. If a number appears in the string then it must appear exactly twice.

2. There are the same number of + and — symbols.

Example/clarification: We consider +1212— the same (3, 3)-clan as +2121—.
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Inclusion

Type Symmetric Pair B-orbits parametrized by G/P
Alll - (SLp+q, S(GL, x GLg)) (p, g)-clans Grp(CPt9)
Cl (Sp2n. GL,) skew-symmetric (n, n)-clans A(n)
DIl (503, GL,) DIl (n, n)-clans OGr,(C2m)

{DIll (n, n)-clans} < {skew-symmetric (n, n)-clans} < {(n, n)-clans}

Definition (Matsuki-Oshima '90, Yamamoto '97)

An (n, n)-clan is a string of 2n symbols, which are either 4+, —, or a natural
number, such that:
1. If a number appears in the string then it must appear exactly twice.
2. There are the same number of + and — symbols.

Example/clarification: We consider +1212— the same (3, 3)-clan as +2121—.
Question: When is a symmetric space closure order equal to the restriction of
the type Alll closure order?
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Hermitian-type symmetric space closure order
We have two natural projection maps

G/P< G/LZ> G/P-
(P~ is “opposite” parabolic, L= PN P~.)
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Hermitian-type symmetric space closure order

We have two natural projection maps

G/P< G/LZ> G/P-
(P~ is "opposite” parabolic, L= PN P~.)

Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17):
1. images of orbits in G/P and in G/P~ (“sects”),
2. the underlying involution associated to a clan (set of orthogonal roots).
Example: Clan v = +1212— has underlying involution ¢, = (2 4)(3 5).

Clans, sects, and symmetric space closure orders ICERM Workshop Geometry and Combinatorics from
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1. images of orbits in G/P and in G/P~ (“sects”),
2. the underlying involution associated to a clan (set of orthogonal roots).
Example: Clan v = +1212— has underlying involution ¢, = (2 4)(3 5).

Combinatorial gadgets

1. Compare images in G/P and G/P~ by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C).
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Hermitian-type symmetric space closure order
We have two natural projection maps

G/P< G/LZ> G/P-
(P~ is "opposite” parabolic, L= PN P~.)

Bruhat order on clans is determined by (after Wyser '16, Gandini-Maffei '17):
1. images of orbits in G/P and in G/P~ (“sects”),
2. the underlying involution associated to a clan (set of orthogonal roots).
Example: Clan v = +1212— has underlying involution ¢, = (2 4)(3 5).

Combinatorial gadgets

1. Compare images in G/P and G/P~ by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C).

100 123 00 1] 123
Example: o= [0 0 1| =2 [0 1 2[,p=1(0 1 ol =& |1 2 2f,
010 01 1 100 111

so in this case o < p because each entry of R(o) is < that of R(p).
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Example and result

For clans, v < 7 if and only if...

1. n(y) < x(7) in G/P (associated lattice path lies weakly below),
2. 7 (y) <7 (1) in G/P~ (associated lattice path lies weakly above),
3. for involutions, 0, < 0.

F—t+—

IN

T

o (3808 e [333Y] < [1338]. 388
+11- 0100 o112 = 1222 %oy 1000 To; 1212
0001 0001 0111 7) (0100

Theorem, (B., '20)

The Bruhat order on the type C/ symmetric space is the restriction of the Bruhat
order on the type Alll symmetric space to the skew-symmetric clans.

Remark: DIl fails to restrict at the Weyl group level, comparing involutions.
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Thank You!

Inclusion order on Borel orbit closures in SLs /L5 5.

Bruhat order on Schubert cells in Gr(2,4).
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N
Main Result

Theorem (H.) Let F, be the finite field of ¢ elements, Mat, (F,) denote
the set of n x n matrices over Fy, and GL,(IF;) the set of invertible
matrices therein. Then

|GL,,(Fy))|
=(1-2)(1- g 2)(1—q72%2).. .)_2Hq(z),

where H,(z) is a power series in z with infinite radius of convergence.

i I{A, B € Mat,(F,) : AB= BA=0}| ,
z
n=0

Techniques of the proof: Counting is easy. The factorization uses standard
g-series identities involving Young diagrams and Durfee squares. H,(z)
can be written down explicitly.
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Geometric picture

Such generating functions correspond to affine F -varieties in a systematic
way:

Z|{ABEMat( ) AB=BA=0}| ,

2 GL (F,) 2"~ {(2,y) : 2y = 0}

(1—2)1—qg'2)1—q22).. Z ||l\éit ~ Ab

q

If we denote the generating function associated to a variety X by ZX(z)
then the main result can be restated as

/Z\{a:y:()} (Z)

— is an entire function.
Z(two lines) (Z
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Conjecture

Conjecture (informal)

The fact that {two disjoint lines} is a resolution of singularity of {xy = 0}
is the geometric reason behind the main result.

Conjecture (formal)

Let X be any curve over [F, with only planar singularities, and assume X
is a resolution of singularity of X. Then AXE ; is entire in z.

(2

X

N

We remark that the question only depends on the type of the singularity.
The main result implies the conjecture holds for nodes.

This phenomenon is seen for the generating function of Hilbert schemes
(Gottsche—Shende '14, Refined curve counting on complex surfaces).

4/6



Other open questions

Even in the main result, the holomorphic factor Hq(z) is explicit, its
behavior is still mysterious.

e Can it be further factorized? (Most likely no, but maybe there is a
natural weaker question to ask.)

@ Does it have an “almost” functional equation?
Here are the observed data for the zeros of H,(2):

@ There seem to be infinitely many zeros, namely, z1, zo, ... in first
quadrant, and their complex conjugates.

1
@ Zni1 X Qzn, and |z,| ~ ¢" 2. For g = 4,

21 = 0.41614 + 1.724674, |z1| = 1.77288 < 2 = ¢'/2
29 = 1.65483 + 7.606111, | 20| = 7.78405 < 8 = ¢*/2
z3 = 6.62192 + 31.089074,  |23| = 31.7865 < 32 = ¢*/2
zy = 26.4883 + 125.01164,  |z4] = 127.787 < 128 = ¢7/2
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