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Motivation

Recall. q - binomial coefficients(
n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
=

[n]q!

[k]q! [n − k]q!

= the number of k-dimensional subspaces of Fn
q.

Field with one element Fq (q-analogues)

object [n] = {1, 2, · · · , n} Fn
q

subobject a k set in [n] a k-dimensional subspace of Fn
q

bracket n the number of lines in Fn
q

factorial n! [n]q!

poset Bn Ln(q)

group |Sn| = n! |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q!

flag flags in [n] flags in Fn
q

binomial coefficient
(n
k

)
= n!

k!(n−k)! =
∣∣∣ Sn
Sk×Sn−k

∣∣∣ (n
k

)
q

=
[n]q!

[k]q![(n−k)]q! =

∣∣∣∣GL(n,q)(
A C
0 B

) ∣∣∣∣
connection limq→1

(n
k

)
q

=
(n
k

)
Table: Example of Field with one element analogues.
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Today, we are interested in the standard quadratic space
(Fn

q, dotn(x)), where dotn(x) = x21 + · · ·+ x2n .

Let us call k-dimensional quadratic subspace W ⊂ (Fn
q,Q) a

dotk-subspace if (W ,Q|W ) ' (Fk
q ,dotk).

Main object: the number of dotk -subspaces of (Fn
q, dot(x)).

This count gives us a new analogue of binomial coefficients,
called the dot-binomial coefficients,

(n
k

)
d

, which can be
written as analogues of binomial coefficients.

We define dot-analogues as follows:
[k]d := |dot1-subspaces in dotk |; [n]d ! := [n]d · · · [1]d ;(n
k

)
d

= [n]d !
[k]d ![(n−k)]d ! .(n

k

)
d
<

(n
k

)
q
.

Main Goal: Study related combinatorics of
(n
k

)
d

and its applications.
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Theorem (Y., 2019, 2020+)(n
k

)
d

can be written by the q-binomial coefficients.

For example, when q ≡ 1 (mod 4), and n, k are odd,

(
n

k

)
d

=
q

k(n−k)
2 (q

n−1
2 + 1)(q

n−1
2 − 1)(q

n−3
2 + 1) · · · (q

n−k+2
2 − 1)(q

n−k
2 + 1)

2(q
k−1
2 + 1)(q

k−1
2 − 1)(q

k−3
2 + 1) · · · (q − 1) · 1

=
1

2
q

k(n−k)
2 (q

n−k
2 + 1)

( n−1
2

k−1
2

)
q2

(n
k

)
d

are polynomials of degree k(n − k) in q.

|O(n, q)| = 2n [n]d !.(n
k

)
d

=
∣∣∣ O(n,q)
O(k,q)×O(n−k,q)

∣∣∣ = |Grd(n, k)| < |Grq(n, k)| =
(n
k

)
q
.
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Table: The q-analogues and the dot-analogues (Y., 2019+).
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??
(n
k

)
d

(n
k

) (n
k

)
q

.



Short title

q-analogues dot-analogues

space Fn
q (Fn

q, dotn)

subspace a k-dimensional subspace of Fn
q a dotk -subspace of dotn

bracket the number of lines in Fn
q the number of spacelike lines in (Fn

q, dotn)

factorial [n]q! [n]d !

poset Ln(q) En(q)

group |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q! |O(n, q)| = 2n [n]d !

flag flags in Fn
q Euclidean flags in (Fn

q,dotn)

binomial coefficient
(n
k

)
q

=
[n]q!

[k]q![(n−k)]q! =

∣∣∣∣GL(n,q)(
A C
0 B

) ∣∣∣∣ (n
k

)
d

= [n]d !
[k]d ![(n−k)]d ! =

∣∣∣ O(n,q)
O(k,q)×O(n−k,q)

∣∣∣
Table: The q-analogues and the dot-analogues (Y., 2019+).

Question.

??
(n
k

)
d

(n
k

) (n
k

)
q

.



Short title

Recall limq→1

(n
k

)
q

=
(n
k

)
gives a connection between

(n
k

)
q

and
(n
k

)
.

Question. limq→1

(n
k

)
d

=?

Definition

A set A is called symmetric in Z/(n + 1)Z if A = −A and 0 /∈ A.

Theorem (Y., 2020+)

limq→±1
(n
k

)
d

is the number of symmetric k-sets in Z/(n + 1)Z.

Questions.

Combinatorial descriptions of
(n
k

)
d

?

Analogues of binomial theorem?
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Nonlinear Algebra-Papri Dey

Nonlinear Algebra

Algebraic Geometry Commutative 
Algebra

Convex and 
Discrete 
Geometry

Tensors and
Multilinear 
Algebra

Representation 
Theory

Symbolic and Numerical 
Computation 

Algebra
Geomtry

Combinatorics

Three Objectives 

1. Computational Aspects
2. Applications 
3. Develop mathematical theory and 
algorithms 

Sources

1. Nonlinear Algebra Group at MPI, Leipzig 

2. ICERM Fall 2018 semester program on Nonlinear Algebra

3. Book- Invitation to Nonlinear Algebra- Mateus Michalek and 
     Bernd Sturmfels
          

:
I
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Convex polytope and Algebraic Geometry

Algebraic Torus (C∗)n ↔ C[x±1 , . . . , x
±
n ] Laurent Polynomials

Notation: xα → xα1
1 . . . xαn

n , α = (α1 . . . αn) ∈ Zn

Newton Polytope of f (x) =
∑

α cαxα ∈ C[x±]: The convex hull of the finite set {α : cα 6= 0}.

Convex polytope with vertices in Zn.

A = {α0, . . . , αs} ⊂ Zn → LA = {f (x) =
∑s

i=0 cixαi : αi ∈ A, ci ∈ C, ∀i}

The convex hull of A is the Newton polytope of a generic element of LA, denoted as
4A.

BKK

For a generic choice of f1, . . . , fn ∈ LA, the number of solutions in (C∗)n of the system
f1(x) = · · · = fn(x) = 0 is the same, and is equal to n!vol(4A)

3 / 6



Toric variety and Convex polytope

Due to Khovanskii...one of the references is Escobar and Kaveh 2020...
Consider the map ψA : (C∗)n → CPs such that x 7→ (xα0 : · · · : xαs),

TA := ψA(C∗)n ∼= (C∗)n, provided the differences of elements of A generate Zn

The toric variety XA is the closure of the image of the map ψA in CPs.

The torus (C∗)n acts on CPs by x(z0 : · · · : zs) = (xα0 z0 : · · · : xαs zs)

the variety XA is the closure of the orbit of (1 : · · · : 1).

The degree of XA ⊂ CPs is equal to n!vol(4A)

Moment Map: µA : XA →4A.
µA : CPs → Rn is defined by

(z0 : · · · : zs) 7→
s∑

i=0

(
|zi|2∑s
j=0 |zj|2

)
αi ∈ 4A

µA is invariant under the action of (C∗)n

µA(CPs) = µA(XA) = 4A
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Permutohedron and Associahedron

The flag variety Fn: {0} = V0 ( V1 ( . . .Vn = Cn ↔ M ∈ GL(n,C),Vi =
the row span of the top i rows of M

Plucker Coordinates of the subspace Vi: (pI(M) : |I| = i) ∈ CP
(n

i

)
−1, 1 ≤ i ≤ n

Fn: A projective variety in CP
(n

1

)
−1 × · · · × CP

( n
n−1

)
−1

The torus (C∗)n: the group D of invertible diagonal n× n matrices.

Fn is a D-invariant subvariety-moment map.

The image of this map is the permutohedron Pn.

The Associahedron

The Catalan Number

Generealization:Newton-Okounkov body
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Numerical Semigroup: Principal Matrix and Frobenius number

The Semigroup S = 〈a〉 generated by a = {a1, . . . , an} of positive integers.

When (a1, . . . , an) = 1, the semigroup 〈a〉 is called a numerical semigroup

Consider the k-algebra homomorphism φa : K[x1, . . . , xn]→ k[t] given by φa(xi) = tai .

The image of this map φa is the semigroup ring k[a]
k[a] = K[x1, . . . , xn]/Ia where kerφa = I(a).
The Ia is the toric ideal of k[a].
Since (a1, . . . , an) = 1, there exists a smallest integer ri > 0 such that riai =

∑
j 6=i rijaj for

all i = 1, . . . , n.

The n× n matrix D(a) := (rij) where rii := −ri is called a principal matrix associated to a.

there is a number f such that x > f → x ∈ S, a numerical semigroup. This number f is
called the Frobenius number.

f is the largest positive integer not in S.

The semigroup S is symmetric if for all x < f , x ∈ S if and only if f − x /∈ S.
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Clans, sects, and symmetric space closure orders
(joint with Mahir Can & Özlem Uğurlu)
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Symmetric Spaces

G , a connected reductive complex linear algebraic group (subgroup of GLn(C)).

Definition

If θ is an automorphism of G of order 2 with L = G θ the fixed-point subgroup,
then we call G/L a symmetric space, and L a symmetric subgroup.

Theorem (Matsuki, ’79)

A Borel subgroup of G acts on a symmetric space G/L with finitely many orbits.
(Symmetric spaces are spherical varieties.)

For simple G , classification corresponds to classification of real forms of simple
Lie algebras (Cartan).
Those of Hermitian type come in four infinite families of pairs (G , L):

1 Type AIII : (SLp+q,S(GLp × GLq)) 2 Type CI : (Sp2n,GLn)

3 Type DIII : (SO2n,GLn) 4 Type BDI : (SOn,SO2 × SOn−2)

embeddings

*** In these cases, P = LnRu(P) for P parabolic  G/P is a Grassmannian!***
Aram Bingham (T. U. Louisiana) Clans, sects, and symmetric space closure orders ICERM Workshop Geometry and Combinatorics from Root Systems March 23, 2021 2 / 6
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Inclusion

Type Symmetric Pair B-orbits parametrized by G/P

AIII (SLp+q, S(GLp × GLq)) (p, q)-clans Grp(Cp+q)
CI (Sp2n, GLn) skew-symmetric (n, n)-clans Λ(n)
DIII (SO2n, GLn) DIII (n, n)-clans OGrn(C2n)

{DIII (n, n)-clans} ↪→ {skew-symmetric (n, n)-clans} ↪→ {(n, n)-clans}

Definition (Matsuki-Oshima ’90, Yamamoto ’97)

An (n, n)-clan is a string of 2n symbols, which are either +, −, or a natural
number, such that:

1. If a number appears in the string then it must appear exactly twice.
2. There are the same number of + and − symbols.

Example/clarification: We consider +1212− the same (3, 3)-clan as +2121−.
Question: When is a symmetric space closure order equal to the restriction of
the type AIII closure order?
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Hermitian-type symmetric space closure order

We have two natural projection maps

G/P
π←− G/L

π−

−→ G/P−

(P− is “opposite” parabolic, L = P ∩ P−.)

Bruhat order on clans is determined by (after Wyser ’16, Gandini-Maffei ’17):
1. images of orbits in G/P and in G/P− (“sects”),
2. the underlying involution associated to a clan (set of orthogonal roots).

Example: Clan γ = +1212− has underlying involution σγ = (2 4)(3 5).

Combinatorial gadgets

1. Compare images in G/P and G/P− by containment of lattice paths.
2. Involutions are compared using rank control matrices (types A and C ).

Example: σ =

1 0 0
0 0 1
0 1 0

 R(σ)7−→

1 2 3
0 1 2
0 1 1

, ρ =

0 0 1
0 1 0
1 0 0

 R(ρ)7−→

1 2 3
1 2 2
1 1 1

,

so in this case σ ≤ ρ because each entry of R(σ) is ≤ that of R(ρ).
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Example and result
For clans, γ ≤ τ if and only if...

1. π(γ) ≤ π(τ) in G/P (associated lattice path lies weakly below),
2. π−(γ) ≤ π−(τ) in G/P− (associated lattice path lies weakly above),
3. for involutions, σγ ≤ στ .

+−+− −−++

+11−
[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] [
1 2 3 4
0 1 2 3
0 1 1 2
0 0 0 1

] [
1 2 3 4
1 2 2 3
1 2 2 2
0 1 1 1

] [
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
1212

++−− ++−−

≤

π

π−

σγ R(σγ)
≤

R(στ )

π

π−

στ

≤

Theorem, (B., ’20)

The Bruhat order on the type CI symmetric space is the restriction of the Bruhat
order on the type AIII symmetric space to the skew-symmetric clans.

Remark: DIII fails to restrict at the Weyl group level, comparing involutions.
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Thank You!

Inclusion order on Borel orbit closures in SL4/L2,2.

1221

1 +−1 1212 1−+1

+1− 1 1 + 1− 1122 1− 1+ −1 + 1

+11− +− 11 11 +− 11−+ −+ 11 −11+

+ +−− +−+− +−−+ −+ +− −+−+ −−++

Bruhat order on Schubert cells in Gr(2, 4).
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Main Result

Theorem (H.) Let Fq be the finite field of q elements, Matn(Fq) denote
the set of n× n matrices over Fq, and GLn(Fq) the set of invertible
matrices therein. Then

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

zn

=
(
(1− z)(1− q−1z)(1− q−2z) . . .

)−2
Hq(z),

where Hq(z) is a power series in z with infinite radius of convergence.

Techniques of the proof: Counting is easy. The factorization uses standard
q-series identities involving Young diagrams and Durfee squares. Hq(z)
can be written down explicitly.
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Geometric picture

Such generating functions correspond to affine Fq-varieties in a systematic
way:

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

zn  {(x, y) : xy = 0}

(
(1− z)(1− q−1z)(1− q−2z) . . .

)−1
=

∞∑
n=0

|Matn(Fq)|
|GLn(Fq)|

zn  A1
Fq

If we denote the generating function associated to a variety X by ẐX(z),
then the main result can be restated as

Ẑ{xy=0}(z)

Ẑ(two lines)(z)
is an entire function.
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Conjecture

Conjecture (informal)

The fact that {two disjoint lines} is a resolution of singularity of {xy = 0}
is the geometric reason behind the main result.

Conjecture (formal)

Let X be any curve over Fq with only planar singularities, and assume X̃

is a resolution of singularity of X. Then
ẐX(z)

Ẑ
X̃
(z)

is entire in z.

We remark that the question only depends on the type of the singularity.
The main result implies the conjecture holds for nodes.

This phenomenon is seen for the generating function of Hilbert schemes
(Göttsche–Shende ’14, Refined curve counting on complex surfaces).
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Other open questions

Even in the main result, the holomorphic factor Hq(z) is explicit, its
behavior is still mysterious.

Can it be further factorized? (Most likely no, but maybe there is a
natural weaker question to ask.)

Does it have an “almost” functional equation?

Here are the observed data for the zeros of Hq(z):

There seem to be infinitely many zeros, namely, z1, z2, . . . in first
quadrant, and their complex conjugates.

zn+1 ≈ qzn, and |zn| ≈ qn−
1
2 . For q = 4,

z1 = 0.41614 + 1.72467i, |z1| = 1.77288 < 2 = q1/2

z2 = 1.65483 + 7.60611i, |z2| = 7.78405 < 8 = q3/2

z3 = 6.62192 + 31.08907i, |z3| = 31.7865 < 32 = q5/2

z4 = 26.4883 + 125.0116i, |z4| = 127.787 < 128 = q7/2
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Thank you!
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