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(1) Mutate the following quiver at vertex 1. Alternatively, mutate the quiver
at vertex 2.

(2) Start with the following labelled seed and perform the following sequence
of mutations: µ1, µ3, µ2, µ1, µ3, µ2, µ1, µ3, µ2, µ1, µ3, µ2. Compute the clus-
ter variables you get at each step and make sure that they are Laurent
polynomials in {x1, x2, x3} with positive coefficients.

(3) Verify that for any quiver Q and vertex k, µ2
k(Q) = Q.

(4) If T is a triangulation and T ′ is obtained by flipping at diagonal d, then

Q
′

T = µd(QT ). (Try verifying in some examples, then prove it.)

(5) Prove that for any A ∈ Gr2,n and for any i < j < k < `,

pik(A)pj`(A) = pij(A)pk`(A) + pi`(A)pjk(A).

(6) Draw the flip graph of the triangulations of a hexagon.

(7) (To do after the second lecture) Show that the rectangles seed gives a cluster
structure on C[Grk,n]. More specifically:
• Show that if one mutates at any mutable cluster variable, the new

cluster variable is a regular function which is coprime to the old
cluster variable (so that one can apply the Starfish Lemma).

• Show that one can obtain any Plücker coordinate from the rectangles
seed by an appropriate sequence of mutations.

(8) (To do after the second lecture) Although the equation

P135P246 − P134P256 − P136P245 − P123P456 = 0

does not lie in the ideal generated by the exchange relations, show that we
can multiply it by a monomial in the Plücker coordinates so that the result
lies in the exchange ideal.
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