Thursday, February 4, 2021 PM Session

Speaker: Sam Payne, University of Texas at Austin

Teaching Assistants: Juliette Bruce, Daniel Corey, Siddarth Kannan

Tropical Moduli Spaces Problem Session

Daniel Corey and Sam Payne

February 4, 2021

The goal of these problems is to study the topology of $\Delta_{1,3}$ —the moduli space of stable tropical curves of genus 1 with 3 marked points—along with some of its natural subcomplexes.

Let $\Delta_{\mathbf{G}}$ denote the locally closed cell in $\Delta_{g,n}$ parameterizing stable tropical curves whose underlying marked weighted graph is **G**. Let $\Delta_{g,n}^{\text{bm}} \subset \Delta_{g,n}$ denote the closure of the locus of tropical curves with *bridges* or *multiple edges*; it consists of the cells $\Delta_{\mathbf{G}}$ where **G** has a vertex with positive weight, loop, cut-vertex, bridge, pair of parallel edges, or vertex with at least two markings.

There are 7 maximal cells in $\Delta_{1,3}$, and these are precisely the cells associated to the graphs \mathbf{G}_i and \mathbf{H}_i , for $i \in \{1, 2, 3\}$, and \mathbf{K} , as shown in the following figure.

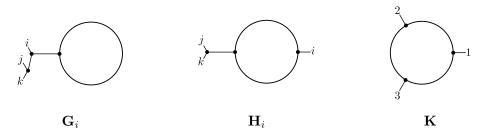


Figure 1: The markings i, j, k are distinct elements of $\{1, 2, 3\}$.

- 1. Let $\Sigma_i = \overline{\Delta_{\mathbf{G}_i}} \cup \overline{\Delta_{\mathbf{H}_i}}$.
 - (a) Prove that $\Delta_{1,3}^{\text{bm}} = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$.
 - (b) Prove that each Σ_i is contractible.
 - (c) Prove that $\Sigma_i \cap \Sigma_j$ is a point, for distinct $i, j \in \{1, 2, 3\}$, as is $\Sigma_1 \cap \Sigma_2 \cap \Sigma_3$.
 - (d) Conclude that $\Delta_{1,3}^{\text{bm}}$ is contractible.
- 2. Let \mathbf{K} be the graph on the right in Figure 1.
 - (a) Prove that $\Delta_{\mathbf{K}}$ is the only cell of $\Delta_{1,3}$ that is not contained in $\Delta_{1,3}^{\text{bm}}$.
 - (b) Prove that $\Delta_{1,3}/\Delta_{1,3}^{\text{bm}}$ is homeomorphic to S^2 .
 - (c) Conclude that $\Delta_{1,3}$ is homotopy equivalent to S^2 .

Extra Credit

The locus $\Delta_{q,n}^{\text{bm}}$ is only one of several natural subcomplexes of $\Delta_{q,n}$ that are similarly useful.

- Let $\Delta_{g,n}^{\text{lw}} \subset \Delta_{g,n}$ be the subcomplex with cells $\Delta_{\mathbf{G}}$ such that \mathbf{G} has a *loop* or a vertex with positive *weight*.
- Let $\Delta_{g,n}^{\text{rep}} \subset \Delta_{g,n}$ be the subcomplex with cells $\Delta_{\mathbf{G}}$ such that \mathbf{G} has a *repeated marking*, i.e., a vertex with at least two markings.
- Let $\Delta_{g,n}^{\mathrm{br}} \subset \Delta_{g,n}$ be the subcomplex obtained as the closure of the locus of tropical curves with *bridges*. Its cells are those $\Delta_{\mathbf{G}}$ where **G** has a vertex with positive weight, loop, cut-vertex, bridge, or vertex with at least two markings.
- 3. Prove that $\Delta_{1,3}^{\text{rep}}$ and $\Delta_{1,3}^{\text{br}}$ are equal to $\Delta_{1,3}^{\text{bm}}$.
- 4. Consider $\Delta_{1,3}^{\text{lw}}$.
 - (a) Prove that $\Delta_{1,3}^{\text{lw}} = \overline{\Delta_{\mathbf{G}_1}} \cup \overline{\Delta_{\mathbf{G}_2}} \cup \overline{\Delta_{\mathbf{G}_3}}$.
 - (b) Prove that each $\overline{\Delta_{\mathbf{G}_i}}$ is contractible.
 - (c) Prove that $\overline{\Delta_{\mathbf{G}_i}} \cap \overline{\Delta_{\mathbf{G}_j}}$ is a point, for distinct $i, j \in \{1, 2, 3\}$, as is $\overline{\Delta_{\mathbf{G}_1}} \cap \overline{\Delta_{\mathbf{G}_2}} \cap \overline{\Delta_{\mathbf{G}_3}}$.
 - (d) Conclude that $\Delta_{1,3}^{\text{lw}}$ is contractible.
- 5. Draw $\Delta_{1,3}$.

