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First talk

• Example.

• A key tool – cluster localization.

• Example.

Second talk

• A key tool – dealing with frozen variables.

• More examples.

• Mixed Hodge structure.



B-matrices

Let’s say we have a quiver Q̃ with n mutable vertices and m frozen

vertices. We build an (n + m)× n matrix B̃ whose rows are

indexed by all the vertices and whose columns are indexed by the

mutable vertices, with

Bij = #(arrows i→ j)−#(arrows j → i).

We write B for the n× n mutable part of B̃ and Q for the mutable

part of Q̃.
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A lemma to deal with frozen variables

Lemma (Lam-S.): Let B̃ correspond to a cluster variety X . Make

a new B̃-matrix B̃′ by adding one more frozen row which is in the

Z-span of the rows of B̃, and let X ′ be the corresponding cluster

variety. Then X ′ ∼= X × C∗.



A lemma to deal with frozen variables

Lemma (Lam-S.): Let B̃ correspond to a cluster variety X . Make

a new B̃-matrix B̃′ by adding one more frozen row which is in the

Z-span of the rows of B̃, and let X ′ be the corresponding cluster

variety. Then X ′ ∼= X × C∗.

Proof sketch: Let y be the new cluster variable of X ′. Then

X ∼= {y = 1} ⊂ X ′. Using the linear relation between the rows of

B̃′, we get an action of C∗ on X ′ for which each cluster variable is

rescaled by some power of t ∈ C∗, and the y-variable is rescaled by

t. So {y = 1} is a slice to this action.



A lemma to deal with frozen variables

Lemma (Lam-S.): Let B̃ correspond to a cluster variety X . Make

a new B̃-matrix B̃′ by adding one more frozen row which is in the

Z-span of the rows of B̃, and let X ′ be the corresponding cluster

variety. Then X ′ ∼= X × C∗.

Define two algebraic varieties X and Y to be torus equivalent if

there is some N such that X × (C∗)N ∼= Y × (C∗)N . Torus

equivalent varieties have the same cohomology groups (Kunneth),

same mixed Hodge structures and (abusing language slightly) same

point counts over finite fields.

Corollary The torus equivalence class of a cluster variety only

depends on the mutable part B, on the number of frozen variables,

and on the Z-span of the rows of B̃.



A lemma to deal with frozen variables

Corollary The torus equivalence class of a cluster variety only

depends on the mutable part B, on the number of frozen variables,

and on the Z-span of the rows of B̃.

So, the G(3, 6) example on the previous slide could be shortened to

“

[ 0 −1 −1 1
1 0 0 −1
1 0 0 −1
−1 1 1 0

]
, six frozen rows, Z4.”



Definition We’ll say that a B̃ matrix has full rank if it has rank

n, so the rows span an n-dimensional lattice. We’ll say that B̃ has

really full rank if the Z-span of the rows is Zn. Both of these

properties are mutation invariants. We’ll also apply these words to

the cluster algebra and the cluster variety.

When working with really full rank examples, I’ll usually only draw

the mutable part of the quiver and then put the number of frozen

variables in a box, so I would represent G(3, 6) as
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Definition We’ll say that a B̃ matrix has full rank if it has rank

n, so the rows span an n-dimensional lattice. We’ll say that B̃ has

really full rank if the Z-span of the rows is Zn. Both of these

properties are mutation invariants. We’ll also apply these words to

the cluster algebra and the cluster variety.

Here is our first theorem to emphasize the usefulness of these

concepts:

Theorem (Muller) A locally acyclic cluster variety of full rank is

smooth.



More examples

Our last example from the previous talk was x1 −→ x2. It has

(H0, H1, H2) = (Z, 0,Z) and has q2 + 1 points over Fq.

Let’s look at x1 −→ x2 −→ x3. The mutable part of the B-matrix

is
[

0 1 0
−1 0 1
0 −1 0

]
, which only has rank 2, so we need to add a frozen row

if we want this to be full rank. Let’s look at x1 −→ x2 −→ x3 1 .



The edge x2 −→ x3 is separating. So the cluster variety

X (x1 −→ x2 −→ x3 1 ) is covered by X (x1 −→ x2 2 ) and

X (x1 x3 2 ) with overlap X (x1 3 ).



The edge x2 −→ x3 is separating. So the cluster variety

X (x1 −→ x2 −→ x3 1 ) is covered by X (x1 −→ x2 2 ) and

X (x1 x3 2 ) with overlap X (x1 3 ).

The number of points over Fq is

(q2+1)(q−1)2+(q2−q+1)2−(q2−q+1)(q−1)2 = q4−q3+q2−q+1.



The edge x2 −→ x3 is separating. So the cluster variety

X (x1 −→ x2 −→ x3 1 ) is covered by X (x1 −→ x2 2 ) and

X (x1 x3 2 ) with overlap X (x1 3 ).

The number of points over Fq is

(q2+1)(q−1)2+(q2−q+1)2−(q2−q+1)(q−1)2 = q4−q3+q2−q+1.

The Mayer-Vietoris sequence is

0 // H0(X ) // Z⊕ Z // Z
rr

H1(X ) // Z2 ⊕ Z2 // Z3

rr
H2(X ) // Z2 ⊕ Z3 // Z4

rr
H3(X ) // Z2 ⊕ Z2 // Z3

rr
H4(X ) // Z⊕ Z // Z

We conclude (H0, H1, H2, H3, H4) = (Z,Z,Z,Z,Z).



In general, we can inductively check the following result∗: Consider

the chain • − • − • − · · · − • m with n nodes. If n is odd, then

assume m ≥ 1.

The number of points over Fq is

(qn +qn−2+ · · ·+q2 +1)(q − 1)m n even

(qn−qn−1+qn−2+ · · ·−q2+q−1)(q − 1)m−1 n odd

The dimension of Hj is ± the coefficient of qj .

All boundary maps in Mayer-Vietoris are 0.

∗ Found earlier by Chapoton, On the number of points over finite

fields on varieties related to cluster algebras.



But not every example is so nice. Let us turn to the E6 diagram,

which is the cluster type of G(3, 7).
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The point count is

(1 −q +q2 −q3 +q4 −q5 +q6
)

+ (1 −q +3q2−2q3+3q4 −q5 +q6
)

− (1−2q+3q2−4q3+3q4−2q5 +q6
)

= 1 +q2 +q3 +q4 +q6



(1 −q +q2 −q3 +q4 −q5 +q6
)

+ (1 −q +3q2−2q3+3q4 −q5 +q6
)

− (1−2q+3q2−4q3+3q4−2q5 +q6
)

= 1 +q2 +q3 +q4 +q6

The cohomomology is (Z, 0,Z, 0,Z2, 0,Z). Why is H4 ∼= Z2?

0 // H0(X ) // Z⊕ Z // Z
rr

H1(X ) // Z⊕ Z // Z2

rr
H2(X ) // Z⊕ Z3 // Z3

rr
H3(X ) // Z1 ⊕ Z2 // Z4

rr
H4(X ) // Z⊕ Z3 // Z3

rr
H5(X ) // Z⊕ Z // Z2

rr
H6(X ) // Z⊕ Z // Z



(1 −q +q2 −q3 +q4 −q5 +q6
)

+ (1 −q +3q2−2q3+3q4 −q5 +q6
)

− (1−2q+3q2−4q3+3q4−2q5 +q6
)

= 1 +q2 +q3 +q4 +q6

The cohomomology is (Z, 0,Z, 0,Z2, 0,Z). Why is H4 ∼= Z2?

Half of it is the cokernel of Z⊕ Z2 −→ Z4, the other half is the

kernel of Z⊕ Z3 −→ Z3.

Point counts and betti numbers are two shadows of a more

complicated structure: The mixed Hodge structure.



Mixed Hodge structures

Let X be a complex algebraic variety. Then Hk(X,C) comes

equipped with a splitting, called the Deligne splitting

Hk(X,C) =

k⊕
p=0

k⊕
q=0

Hk,(p,q)(X).

This splitting is respected by maps (1) induced functorially by

maps of spaces (2) the boundary maps in Mayer-Vietores sequences

(3) up to a small correction term, the maps in Gysin sequences.



Mixed Hodge structures

Let X be a complex algebraic variety. Then Hk(X,C) comes

equipped with a splitting, called the Deligne splitting

Hk(X,C) =

k⊕
p=0

k⊕
q=0

Hk,(p,q)(X).

Theorem: (Lam-S.) Suppose that X is a Louise cluster variety of

full rank. Then Hk,(p,q) = 0 for p 6= q. Each Deligne summand

Hk,(w,w)(X) ⊂ Hk(X,C) has a basis in Hk(X,Q).



Theorem: (Lam-S.) If X is Louise and really full rank, then

#X (Fq) =
dimX∑
k=0

(−1)dimX−k
k∑

w=0

qw dimHk,(w,w)(X ).



Theorem: (Lam-S.) If X is Louise and really full rank, then

#X (Fq) =
dimX∑
k=0

(−1)dimX−k
k∑

w=0

qw dimHk,(w,w)(X ).

If X is full rank, we have a formula involving Dirichlet characters.

For example, {xx′ = y3 + 1, y 6= 0} has cohomology (Z,Z,Z3) and

has 1− q +
(
q2 + q +

(
−3
q

)
q
)

points over Fq.



Our general understanding of Hk,(w,w) is very poor, and we are very

interested in improving it. Here are the two things we do know:

Theorem (Lam-S.) We have an explicit basis for Hk,(k,k). The

basis elements are cup products of elements from H1,(1,1) and

H2,(2,2).

Theorem (Lam-S.) For any fixed value of s, the polynomial

dimX∑
w=0

qw dimHw+s,(w,w)(X )

as palindromic, with center at qdimX/2.


