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First talk

• Example.

• A key tool – cluster localization.

• Example.

Second talk

• A key tool – dealing with frozen variables.

• More examples.

• Mixed Hodge structure.
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Initial example:

Initial quiver:

x −→ y

Mutation:

x′ ←− y

Clusters (x, y), (x′, y). We have xx′ = y + 1.

Cluster algebra:

A = C[x, x′, y±1]/(xx′ − y − 1)

Note that we invert the frozen variable y.

Cluster variety

Y = SpecA =
{

(x, x′, y) ∈ C× C× C∗ : xx′ = y + 1
}
.

What does this look like?



{
(x, x′, y) ∈ C× C× C∗ : xx′ = y + 1

}
One visualization: This is {(x, x′) ∈ C2 : xx′ − 1 6= 0}:



{
(x, x′, y) ∈ C× C× C∗ : xx′ = y + 1

}
Another visualization: Consider the projection onto the

y-coordinate. For y 6= −1, the fiber is a cylinder; for y = 1, the

fiber is a pinched cylinder. Of course, there is no fiber over y = 0.

This has a deformation retract onto the subset |x| = |x′|, |y| = 1.



{
(x, x′, y) ∈ C× C× C∗ : xx′ = y + 1, |x| = |x′|, |y| = 1

}

Cohomology: H0 = Z, H1 = Z, H2 = Z.



How does the cluster structure come in?

A = C[x, x′, y±1]/(xx′ − y − 1)

Clusters are (x, y) and (x′, y). Laurent phenomenon gives:

A ⊂ C[x±1, y±1] A ⊂ C[(x′)±1, y±1].



How does the cluster structure come in?

A = C[x, x′, y±1]/(xx′ − y − 1)

Clusters are (x, y) and (x′, y). Laurent phenomenon gives:

A ⊂ C[x±1, y±1] A ⊂ C[(x′)±1, y±1].

Geometrically, we have two open inclusions (C∗)2 → Y: One by

(x, y) 7→ (x, 1+y
x , y) and the other by (x′, y) 7→ ( 1+y

x′ , x′, y).

⊂ ⊃

Either one of these inclusions gives a decomposition Y = (C∗)2 t C.



⊂ ⊃

Note that the point (0, 0,−1) is in neither torus.

The union of cluster tori is sometimes called the cluster

manifold . It is messier than the affine variety SpecA because it is

missing lots of low dimensional strata. We won’t discuss it here.



Other fields:

Over Fq, we have q2 − (q − 1) = q2 − q + 1 points.

Over R, it is natural to look at the totally positive points:



Now, onto generalities

A a cluster algebra over C. Recall that this means that A has

certain elements called cluster variables, which are organized

into sets called clusters.

Our cluster will have size d = n + m, where m of the variables are

frozen and in every cluster. We include the reciprocals of the

frozen variables in A.

We write X = SpecA. To be precise, we are considering the

complex points of SpecA, topologized using the classical topology

on C.



For each cluster (x1, . . . , xd), we have the Laurent phenomenon

A ⊆ C[x±11 , . . . , x±1d ]. This gives a map from

SpecC[x±11 , . . . , x±1d ] = (C∗)d to X .

I claim that this is an open inclusion. In other words, I claim that

A[(x1x2 · · ·xd)−1] = C[x±11 , . . . , x±1d ].

Proof: We have C[x1, x2, . . . , xd] ⊆ A ⊆ C[x±11 , . . . , x±1d ]. So

A[(x1x2 · · ·xd)−1] = C[x±11 , . . . , x±1d ]. �

Thus, geometrically, the open locus {x1x2 · · ·xd 6= 0} in X is

isomorphic to (C∗)d. Each cluster gives an open torus in the

cluster variety.



We would like to make larger open sets by setting some, but not

all, the variables in a cluster to be nonzero. In particular, we’d like

to get open covers this way.

Reminder of basic algebraic geometry: Let A be a ring,

X = SpecA, and u1, u2, . . . , uk functions in A. Then {uj 6= 0} is

SpecA[u−1j ]. The open sets {uj 6= 0} cover X if and only if

(u1, u2, . . . , uk) generate the unit ideal.
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Let A be a cluster algebra and x = (x1, x2, . . . , xd) a cluster. Let

S ⊆ x and let xS =
∏

x∈S x. So we’d like to understand A[x−1S ]. Is

it a cluster algebra? Can we cover X by simpler cluster varieties of

this form?
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Let A be a cluster algebra and x = (x1, x2, . . . , xd) a cluster. Let

S ⊆ x and let xS =
∏

x∈S x. So we’d like to understand A[x−1S ]. Is

it a cluster algebra?

There is a natural candidate cluster algebra: Take the quiver for

(x1, . . . , xd) and declare the vertices xi, for i ∈ S, to be frozen. Let

Ax,S be the resulting cluster algebra. We have Ax,S ⊆ A[x−1S ].

Very often, we have equality.

In order to think about this, we introduce the upper cluster algebra:

U =
⋂

(x1,...,xd) a cluster

C[x±11 , . . . , x±1d ].

The Laurent phenomenon says that A ⊆ U . Very often, A = U .

We can define Ux,S similarly to Ax,S . We have

Ax,S ⊆ A[x−1S ] ⊆ U [x−1S ] ⊆ Ux,S .

Thus, if Ax,S = Ux,S , then all are equal.



Ax,S ⊆ A[x−1S ] ⊆ U [x−1S ] ⊆ Ux,S

Theorem (Berenstein-Fomin-Zelevinsky, Cluster Algebras III ) If

there is a seed where the mutable part of the quiver is acyclic∗,

then A = U .

Corollary If the restriction of Q to the vertices not in S is acyclic,

then A[x−1S ] is the cluster algebra Ax,S .

∗ A quiver is called acyclic if it has no directed cycle.



Theorem (Muller) Suppose that we have clusters x1, x2, . . . , xr

and subsets S1, S2, . . . , Sr with Axi,Si = Uxi,Si . Suppose that the

open sets SpecAxi,Si cover SpecA. Then A = U .

Definition (Muller) We call A locally acyclic if SpecA is covered

by finitely many SpecAxi,Si where the mutable part of the quiver

for each Axi,Si is acyclic.

Definition (Muller) Let Q be a quiver. We define an edge i→ j to

be a separating edge of Q if there is no bi-infinite directed walk

containing i→ j.

Theorem (Muller) If i→ j is a separating edge, then

SpecA = SpecA[x−1i ] ∪ SpecA[x−1j ].

These results are from A = U for Locally Acyclic Cluster Algebras.

See also Muller’s earlier paper Locally Acyclic Cluster Algebras.



The Banff algorithm

Step 0: If Q has no edges, halt. In this case, X looks a

lot like our original example Y; see Lam-S., Cohomology of

cluster varieties. I. Locally acyclic case, Section 7.

Step 1: If Q has edges, mutate Q until you find a quiver Q′

with a separating edge i → j. In this case, you know that

SpecA = SpecA[x−1i ] ∪ SpecA[x−1j ].

Step 2: Recurse on the quivers Q′ \ {i} and Q′ \ {j}.

If every branch of this recursion halts, then every localization that

you met along the way was a cluster algebra and you will have

computed an open cover of X by simple spaces.



Define a cluster algebra to be Banff if, either Q has no edges, or

else Q has a separating edge xi → xj , and A[x−1i ] and A[x−1j ] are

both Banff. In other words, the Banff algorithm stops.

Define a cluster algebra to be Louise

if, either Q has no edges, or else Q

has a separating edge xi → xj , and

A[x−1i ], A[x−1j ] and A[(xixj)
−1] are

all Louise.



A final example
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A final example

x1 −→ x2.

This is the cluster algebra of type A2 with no frozen variables.

It is {∆12 = ∆23 = ∆34 = ∆45 = ∆15 = 1} inside G(2, 5).

It is also {(∆ij) ∈ G(2, 5) : ∆12∆23∆34∆45∆15 6= 0}/(C∗)5.



A final example

x1 −→ x2.

The edge is separating, so X is covered by the localizations

Y1 := {x1 6= 0} and Y2 := {x2 6= 0}. These have quivers x1 −→ x2

and x1 −→ x2 . Each localization is isomorphic to our original

example, Y.

The intersection Y1 ∩ Y2 is {x1x2 6= 0}. This is the torus (C∗)2.

C

C

(C∗)2
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Topologically, this is homotopic to (S1)2 with two discs glued in,

bounding circles in the two directions – in other words, S2.



C

C

(C∗)2

In terms of cohomology, we have a Meyer-Vietores sequence

0 // H0(X ) // H0(Y1)⊕H0(Y2) // H0(Y1 ∩ Y2)

qqH1(X ) // H1(Y1)⊕H1(Y2) // H1(Y1 ∩ Y2)

qqH2(X ) // H2(Y1)⊕H2(Y2) // H2(Y1 ∩ Y2)

0 // H0(X ) // Z⊕ Z // Z
qqH1(X ) // Z⊕ Z // Z2

qqH2(X ) // Z⊕ Z // Z

So H0(X ) = Z, H1(X ) = 0, H2(X ) = Z.



Fq

Fq

(F∗q)2

In terms of counting points over Fq, we have

#X (Fq) = (q − 1)2 + q + q = q2 + 1.
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(F∗q)2

In terms of counting points over Fq, we have

#X (Fq) = (q − 1)2 + q + q = q2 + 1.

A teaser for a recent paper: This is a q-Catalan number! See

Galashin and Lam Positroids, knots, and (q, t)-Catalan numbers for

much more.


