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First talk
e Example.
e A key tool — cluster localization.

e Example.

Second talk

e A key tool — dealing with frozen variables.

e More examples.

e Mixed Hodge structure.
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Initial example:

Initial quiver:

Mutation:

[y

Clusters (x,y), (2',y). We have za’ =y + 1.
Cluster algebra:

A =Clz, ', y™)/(za’ —y — 1)
Note that we invert the frozen variable y.

Cluster variety

yZSpecA:{(a:,x’,y)e(Cx(Cx(C* :x:v’:erl}.

What does this look like?




{(:U,a:’,y)E(CX(CX(C* :xaj’:y—|—1}

One visualization: This is {(z,2’) € C? : zz’ — 1 # 0}:

3+




{(:U,a:’,y)E(CX(CX(C* :xaj’:y—|—1}

Another visualization: Consider the projection onto the
y-coordinate. For y ¢ —1, the fiber is a cylinder; for y = 1, the
fiber is a pinched cylinder. Of course, there is no fiber over y = 0.

This has a deformation retract onto the subset |z| = |2/, |y| = 1.




{(fc,x’,y) ECxCxC imd' =y+1, [z = 2|, |yl = 1}

Cohomology: H =7, H' =7, H* = Z.




How does the cluster structure come in?

A =Cla, 2, y*]/ (a2’ —y — 1)

Clusters are (x,y) and (2, y). Laurent phenomenon gives:
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How does the cluster structure come in?

A=Clz, 2, y™/(za' —y —1)
Clusters are (x,y) and (z’,y). Laurent phenomenon gives:

AcCCl*y™] AcCC[@) Ly

Geometrically, we have two open inclusions (C*)? — Y: One by

(x,y) — (z, 7%, y) and the other by («/,y) — (15,2, y).
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Either one of these inclusions gives a decomposition ) = (C*)? LI C.
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Note that the point (0,0, —1) is in neither torus.

The union of cluster tori is sometimes called the cluster
manaifold. It is messier than the affine variety Spec A because it is
missing lots of low dimensional strata. We won’t discuss it here.




Other fields:
Over F,, we have ¢° — (¢ — 1) = ¢°* — ¢ + 1 points.

\_

ol
L
| \
-3 [ " PR E— " " "
-3 -2 -1 0




Now, onto generalities

A a cluster algebra over C. Recall that this means that A has

certain elements called cluster variables, which are organized

into sets called clusters.

Our cluster will have size d = n + m, where m of the variables are
frozen and in every cluster. We include the reciprocals of the

frozen variables in A.

We write X = Spec A. To be precise, we are considering the

complex points of Spec A, topologized using the classical topology
on C.




For each cluster (x1,...,zq), we have the Laurent phenomenon
A C (C[afl, L ,:L‘flﬂ]. This gives a map from
SpecClai?, ..., 251 = (C*)9 to X.

I claim that this is an open inclusion. In other words, I claim that
Al(wrws - 2a) Y] = Clatt, .. aF)

Proof: We have Clx1,22,...,24 C A C C[:clil, . ,:I:fiﬂ]. So
Al(zize -+ 2q)" Y = ClzTt, ... 23!, O

Thus, geometrically, the open locus {x129-- x4 # 0} in X is
isomorphic to (C*)¢. Each cluster gives an open torus in the
cluster variety.




We would like to make larger open sets by setting some, but not
all, the variables in a cluster to be nonzero. In particular, we’d like
to get open covers this way.

Reminder of basic algebraic geometry: Let A be a ring,

X = Spec A, and u;y, ug, ..., ur functions in A. Then {u; # 0} is
Spec A[uj_l]. The open sets {u; # 0} cover X if and only if

(u1,us9,...,ux) generate the unit ideal.
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Let A be a cluster algebra and * = (x1,x2,...,x4) a cluster. Let
S Cx and let x5 = [[,.q . So we'd like to understand Afzg']. Is
it a cluster algebra?

There is a natural candidate cluster algebra: Take the quiver for
(x1,...,x4) and declare the vertices xz;, for ¢ € S, to be frozen. Let
Az, s be the resulting cluster algebra. We have A, 5 C Alxg'].
Very often, we have equality.

In order to think about this, we introduce the upper cluster algebra:

U = M ClzE!,... =T,
(z1,...,xzq) & cluster

The Laurent phenomenon says that A C U. Very often, A = U.

We can define U, g similarly to A, g. We have

Thus, if Az s = Ug.s, then all are equal.




Theorem (Berenstein-Fomin-Zelevinsky, Cluster Algebras IIT) If
there is a seed where the mutable part of the quiver is acyclic*,

then A =U.

Corollary If the restriction of () to the vertices not in S is acyclic,

then Afxg'] is the cluster algebra A, s.

* A quiver is called acyclic if it has no directed cycle.




Theorem (Muller) Suppose that we have clusters !, 2, ..., "

and subsets St, 5%, ..., S” with Ayi gi = Ui gi. Suppose that the
open sets Spec Agi gi cover Spec A. Then A =U.

Definition (Muller) We call A locally acyclic if Spec A is covered
by finitely many Spec A, g where the mutable part of the quiver
for each Ag:i g: is acyclic.

Definition (Muller) Let @) be a quiver. We define an edge i — j to
be a separating edge of () if there is no bi-infinite directed walk

contalning 7 — 7.

Theorem (Muller) If i — j is a separating edge, then
Spec A = Spec A[z; '] U Spec A[xj_l].

These results are from A = U for Locally Acyclic Cluster Algebras.
See also Muller’s earlier paper Locally Acyclic Cluster Algebras.




The Banft algorithm
Step 0: If () has no edges, halt. In this case, X looks a
lot like our original example ); see Lam-S., Cohomology of

cluster varieties. 1. Locally acyclic case, Section 7.

Step 1: If () has edges, mutate () until you find a quiver )’

with a separating edge ¢+ — j. In this case, you know that
Spec A = Spec A[z; '] U Spec A[xj_l].
Step 2: Recurse on the quivers Q' \ {¢} and Q" \ {j}.

If every branch of this recursion halts, then every localization that
you met along the way was a cluster algebra and you will have
computed an open cover of X by simple spaces.




Define a cluster algebra to be Banjff if, either () has no edges, or
else Q has a separating edge z; — z;, and A[z; '] and A[xj_l] are
both Banff. In other words, the Banft algorithm stops.

Define a cluster algebra to be Louise

if, either () has no edges, or else ()
has a separating edge z; — z;, and
Alz; 1, A[:cj_l] and Al(z;x;)”!] are
all Louise.




A final example
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A final example

r1 —> I9.

This is the cluster algebra of type A, with no frozen variables.
It is {Alg = Agg = A34 = A45 = A15 = 1} inside G(Q, 5)
It is also {(AZJ) = G(Q, 5) . A12A23A34A45A15 # 0}/((:*)5




A final example

r1 —> I9.

The edge is separating, so X is covered by the localizations
Vi :={x1 # 0} and ) := {x2 # 0}. These have quivers | x1 | — 2
and r1 — | r2 | Each localization is isomorphic to our original

example, V.

The intersection Y1 N Vs is {z125 # 0}. This is the torus (C*)2.

4 4 )

C




Topologically, this is homotopic to (S!)? with two discs glued in,

bounding circles in the two directions — in other words, S?.




In terms of cohomology, we have a Meyer-Vietores sequence

0 —— HY(X) ——= H° (Y1) ® H*(V5) ——= H (Y1 N )s)

HY (X)=—=HYY1)® HY (Y2) —=H' (Y1 N I»)
H?(X)==H*()1) ® H*()s) —= H*(Y1 N V)

P
W
1. ® 7

So HO(X) =Z, HY(X) =0, H2(X) = Z.




In terms of counting points over F,, we have

#X(Fy)= (-1 +q+q=¢+1.




In terms of counting points over F,, we have

#X(Fy)= (-1 +q+q=¢+1.

A teaser for a recent paper: This is a ¢g-Catalan number! See
Galashin and Lam Positroids, knots, and (q,t)-Catalan numbers for

much more.




