

Geometry of cluster varieties I
David E Speyer

First talk

- Example.
- A key tool - cluster localization.
- Example.

Second talk

- A key tool - dealing with frozen variables.
- More examples.
- Mixed Hodge structure.

Initial example:

Initial quiver:

$$
x \longrightarrow y
$$

Initial example:

Initial quiver:

$$
x \longrightarrow y
$$

Mutation:

$$
x^{\prime} \longleftarrow y
$$

Initial example:

Initial quiver:

$$
x \longrightarrow y
$$

Mutation:

$$
x^{\prime} \longleftarrow y
$$

Clusters $(x, y),\left(x^{\prime}, y\right)$. We have $x x^{\prime}=y+1$.

Initial example:

Initial quiver:

$$
x \longrightarrow y
$$

Mutation:

$$
x^{\prime} \longleftarrow y
$$

Clusters $(x, y),\left(x^{\prime}, y\right)$. We have $x x^{\prime}=y+1$.
Cluster algebra:

$$
A=\mathbb{C}\left[x, x^{\prime}, y^{ \pm 1}\right] /\left(x x^{\prime}-y-1\right)
$$

Note that we invert the frozen variable y.

Initial example:

Initial quiver:

$$
x \longrightarrow y
$$

Mutation:

$$
x^{\prime} \longleftarrow y
$$

Clusters $(x, y),\left(x^{\prime}, y\right)$. We have $x x^{\prime}=y+1$.
Cluster algebra:

$$
A=\mathbb{C}\left[x, x^{\prime}, y^{ \pm 1}\right] /\left(x x^{\prime}-y-1\right)
$$

Note that we invert the frozen variable y.
Cluster variety

$$
\mathcal{Y}=\operatorname{Spec} A=\left\{\left(x, x^{\prime}, y\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{*}: x x^{\prime}=y+1\right\}
$$

What does this look like?

$$
\left\{\left(x, x^{\prime}, y\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{*}: x x^{\prime}=y+1\right\}
$$

One visualization: This is $\left\{\left(x, x^{\prime}\right) \in \mathbb{C}^{2}: x x^{\prime}-1 \neq 0\right\}$:

$$
\left\{\left(x, x^{\prime}, y\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{*}: x x^{\prime}=y+1\right\}
$$

Another visualization: Consider the projection onto the y-coordinate. For $y \neq-1$, the fiber is a cylinder; for $y=1$, the fiber is a pinched cylinder. Of course, there is no fiber over $y=0$.

This has a deformation retract onto the subset $|x|=\left|x^{\prime}\right|,|y|=1$.

$$
\left\{\left(x, x^{\prime}, y\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{*}: x x^{\prime}=y+1,|x|=\left|x^{\prime}\right|,|y|=1\right\}
$$

Cohomology: $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}, H^{2}=\mathbb{Z}$.

How does the cluster structure come in?

$$
A=\mathbb{C}\left[x, x^{\prime}, y^{ \pm 1}\right] /\left(x x^{\prime}-y-1\right)
$$

Clusters are (x, y) and $\left(x^{\prime}, y\right)$. Laurent phenomenon gives:

$$
A \subset \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right] \quad A \subset \mathbb{C}\left[\left(x^{\prime}\right)^{ \pm 1}, y^{ \pm 1}\right]
$$

How does the cluster structure come in?

$$
A=\mathbb{C}\left[x, x^{\prime}, y^{ \pm 1}\right] /\left(x x^{\prime}-y-1\right)
$$

Clusters are (x, y) and $\left(x^{\prime}, y\right)$. Laurent phenomenon gives:

$$
A \subset \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right] \quad A \subset \mathbb{C}\left[\left(x^{\prime}\right)^{ \pm 1}, y^{ \pm 1}\right]
$$

Geometrically, we have two open inclusions $\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathcal{Y}$: One by $(x, y) \mapsto\left(x, \frac{1+y}{x}, y\right)$ and the other by $\left(x^{\prime}, y\right) \mapsto\left(\frac{1+y}{x^{\prime}}, x^{\prime}, y\right)$.

Either one of these inclusions gives a decomposition $\mathcal{Y}=\left(\mathbb{C}^{*}\right)^{2} \sqcup \mathbb{C}$.

Note that the point $(0,0,-1)$ is in neither torus.
The union of cluster tori is sometimes called the cluster manifold. It is messier than the affine variety $\operatorname{Spec} A$ because it is missing lots of low dimensional strata. We won't discuss it here.

Other fields:

Over \mathbb{F}_{q}, we have $q^{2}-(q-1)=q^{2}-q+1$ points.

Over \mathbb{R}, it is natural to look at the totally positive points:

Now, onto generalities
A a cluster algebra over \mathbb{C}. Recall that this means that A has certain elements called cluster variables, which are organized into sets called clusters.

Our cluster will have size $d=n+m$, where m of the variables are frozen and in every cluster. We include the reciprocals of the frozen variables in A.

We write $\mathcal{X}=\operatorname{Spec} A$. To be precise, we are considering the complex points of $\operatorname{Spec} A$, topologized using the classical topology on \mathbb{C}.

For each cluster $\left(x_{1}, \ldots, x_{d}\right)$, we have the Laurent phenomenon $A \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$. This gives a map from $\operatorname{Spec} \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]=\left(\mathbb{C}^{*}\right)^{d}$ to \mathcal{X}.
I claim that this is an open inclusion. In other words, I claim that $A\left[\left(x_{1} x_{2} \cdots x_{d}\right)^{-1}\right]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$.
Proof: We have $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{d}\right] \subseteq A \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$. So $A\left[\left(x_{1} x_{2} \cdots x_{d}\right)^{-1}\right]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right] . \square$
Thus, geometrically, the open locus $\left\{x_{1} x_{2} \cdots x_{d} \neq 0\right\}$ in \mathcal{X} is isomorphic to $\left(\mathbb{C}^{*}\right)^{d}$. Each cluster gives an open torus in the cluster variety.

We would like to make larger open sets by setting some, but not all, the variables in a cluster to be nonzero. In particular, we'd like to get open covers this way.

Reminder of basic algebraic geometry: Let A be a ring, $\mathcal{X}=\operatorname{Spec} A$, and $u_{1}, u_{2}, \ldots, u_{k}$ functions in A. Then $\left\{u_{j} \neq 0\right\}$ is Spec $A\left[u_{j}^{-1}\right]$. The open sets $\left\{u_{j} \neq 0\right\}$ cover \mathcal{X} if and only if $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ generate the unit ideal.

We would like to make larger open sets by setting some, but not all, the variables in a cluster to be nonzero. In particular, we'd like to get open covers this way.

Reminder of basic algebraic geometry: Let A be a ring, $\mathcal{X}=\operatorname{Spec} A$, and $u_{1}, u_{2}, \ldots, u_{k}$ functions in A. Then $\left\{u_{j} \neq 0\right\}$ is Spec $A\left[u_{j}^{-1}\right]$. The open sets $\left\{u_{j} \neq 0\right\}$ cover \mathcal{X} if and only if $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ generate the unit ideal.

Let A be a cluster algebra and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ a cluster. Let $S \subseteq \boldsymbol{x}$ and let $x_{S}=\prod_{x \in S} x$. So we'd like to understand $A\left[x_{S}^{-1}\right]$. Is it a cluster algebra? Can we cover \mathcal{X} by simpler cluster varieties of this form?

Let A be a cluster algebra and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ a cluster. Let $S \subseteq \boldsymbol{x}$ and let $x_{S}=\prod_{x \in S} x$. So we'd like to understand $A\left[x_{S}^{-1}\right]$. Is it a cluster algebra?

There is a natural candidate cluster algebra: Take the quiver for $\left(x_{1}, \ldots, x_{d}\right)$ and declare the vertices x_{i}, for $i \in S$, to be frozen. Let $A_{\boldsymbol{x}, S}$ be the resulting cluster algebra. We have $A_{\boldsymbol{x}, S} \subseteq A\left[x_{S}^{-1}\right]$.
Very often, we have equality.

Let A be a cluster algebra and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ a cluster. Let $S \subseteq \boldsymbol{x}$ and let $x_{S}=\prod_{x \in S} x$. So we'd like to understand $A\left[x_{S}^{-1}\right]$. Is it a cluster algebra?
There is a natural candidate cluster algebra: Take the quiver for $\left(x_{1}, \ldots, x_{d}\right)$ and declare the vertices x_{i}, for $i \in S$, to be frozen. Let $A_{\boldsymbol{x}, S}$ be the resulting cluster algebra. We have $A_{\boldsymbol{x}, S} \subseteq A\left[x_{S}^{-1}\right]$. Very often, we have equality.

In order to think about this, we introduce the upper cluster algebra:

$$
U=\bigcap_{\left(x_{1}, \ldots, x_{d}\right) \text { a cluster }} \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]
$$

The Laurent phenomenon says that $A \subseteq U$. Very often, $A=U$.
We can define $U_{\boldsymbol{x}, S}$ similarly to $A_{\boldsymbol{x}, S}$. We have

$$
A_{\boldsymbol{x}, S} \subseteq A\left[x_{S}^{-1}\right] \subseteq U\left[x_{S}^{-1}\right] \subseteq U_{\boldsymbol{x}, S}
$$

Thus, if $A_{\boldsymbol{x}, S}=U_{\boldsymbol{x}, S}$, then all are equal.

$$
A_{\boldsymbol{x}, S} \subseteq A\left[x_{S}^{-1}\right] \subseteq U\left[x_{S}^{-1}\right] \subseteq U_{\boldsymbol{x}, S}
$$

Theorem (Berenstein-Fomin-Zelevinsky, Cluster Algebras III) If there is a seed where the mutable part of the quiver is acyclic*, then $A=U$.

Corollary If the restriction of Q to the vertices not in S is acyclic, then $A\left[x_{S}^{-1}\right]$ is the cluster algebra $A_{\boldsymbol{x}, S}$.

* A quiver is called acyclic if it has no directed cycle.

Theorem (Muller) Suppose that we have clusters $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{r}$ and subsets $S^{1}, S^{2}, \ldots, S^{r}$ with $A_{\boldsymbol{x}^{i}, S^{i}}=U_{\boldsymbol{x}^{i}, S^{i}}$. Suppose that the open sets $\operatorname{Spec} A_{\boldsymbol{x}^{i}, S^{i}}$ cover Spec A. Then $A=U$.

Definition (Muller) We call A locally acyclic if $\operatorname{Spec} A$ is covered by finitely many $\operatorname{Spec} A_{\boldsymbol{x}^{i}, S^{i}}$ where the mutable part of the quiver for each $A_{\boldsymbol{x}^{i}, S^{i}}$ is acyclic.

Definition (Muller) Let Q be a quiver. We define an edge $i \rightarrow j$ to be a separating edge of Q if there is no bi-infinite directed walk containing $i \rightarrow j$.

Theorem (Muller) If $i \rightarrow j$ is a separating edge, then
$\operatorname{Spec} A=\operatorname{Spec} A\left[x_{i}^{-1}\right] \cup \operatorname{Spec} A\left[x_{j}^{-1}\right]$.

These results are from $A=U$ for Locally Acyclic Cluster Algebras. See also Muller's earlier paper Locally Acyclic Cluster Algebras.

The Banff algorithm

Step 0: If Q has no edges, halt. In this case, \mathcal{X} looks a lot like our original example \mathcal{Y}; see Lam-S., Cohomology of cluster varieties. I. Locally acyclic case, Section 7.
Step 1: If Q has edges, mutate Q until you find a quiver Q^{\prime} with a separating edge $i \rightarrow j$. In this case, you know that $\operatorname{Spec} A=\operatorname{Spec} A\left[x_{i}^{-1}\right] \cup \operatorname{Spec} A\left[x_{j}^{-1}\right]$.
Step 2: Recurse on the quivers $Q^{\prime} \backslash\{i\}$ and $Q^{\prime} \backslash\{j\}$.
If every branch of this recursion halts, then every localization that you met along the way was a cluster algebra and you will have computed an open cover of \mathcal{X} by simple spaces.

Define a cluster algebra to be Banff if, either Q has no edges, or else Q has a separating edge $x_{i} \rightarrow x_{j}$, and $A\left[x_{i}^{-1}\right]$ and $A\left[x_{j}^{-1}\right]$ are both Banff. In other words, the Banff algorithm stops.

Define a cluster algebra to be Louise if, either Q has no edges, or else Q has a separating edge $x_{i} \rightarrow x_{j}$, and $A\left[x_{i}^{-1}\right], A\left[x_{j}^{-1}\right]$ and $A\left[\left(x_{i} x_{j}\right)^{-1}\right]$ are all Louise.

A final example

$$
x_{1} \longrightarrow x_{2}
$$

A final example

$$
x_{1} \longrightarrow x_{2}
$$

This is the cluster algebra of type A_{2} with no frozen variables.
It is $\left\{\Delta_{12}=\Delta_{23}=\Delta_{34}=\Delta_{45}=\Delta_{15}=1\right\}$ inside $G(2,5)$.
It is also $\left\{\left(\Delta_{i j}\right) \in G(2,5): \Delta_{12} \Delta_{23} \Delta_{34} \Delta_{45} \Delta_{15} \neq 0\right\} /\left(\mathbb{C}^{*}\right)^{5}$.

A final example

$$
x_{1} \longrightarrow x_{2}
$$

The edge is separating, so \mathcal{X} is covered by the localizations $\mathcal{Y}_{1}:=\left\{x_{1} \neq 0\right\}$ and $\mathcal{Y}_{2}:=\left\{x_{2} \neq 0\right\}$. These have quivers $x_{1} \longrightarrow x_{2}$ and $x_{1} \longrightarrow x_{2}$. Each localization is isomorphic to our original example, \mathcal{Y}.
The intersection $\mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ is $\left\{x_{1} x_{2} \neq 0\right\}$. This is the torus $\left(\mathbb{C}^{*}\right)^{2}$.

Topologically, this is homotopic to $\left(S^{1}\right)^{2}$ with two discs glued in, bounding circles in the two directions - in other words, S^{2}.

In terms of cohomology, we have a Meyer-Vietores sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}(\mathcal{X}) \longrightarrow H^{0}\left(\mathcal{Y}_{1}\right) \oplus H^{0}\left(\mathcal{Y}_{2}\right) \longrightarrow H^{0}\left(\mathcal{Y}_{1} \cap \mathcal{Y}_{2}\right) \\
& H^{1}(\mathcal{X}) \longleftrightarrow H^{1}\left(\mathcal{Y}_{1}\right) \oplus H^{1}\left(\mathcal{Y}_{2}\right) \longrightarrow H^{1}\left(\mathcal{Y}_{1} \cap \mathcal{Y}_{2}\right) \\
& H^{2}(\mathcal{X}) \longleftrightarrow H^{2}\left(\mathcal{Y}_{1} \cap \mathcal{Y}_{2}\right) \\
&\left.0 \longrightarrow \mathcal{Y}_{1}\right) \oplus H^{2}\left(\mathcal{Y}_{2}\right) \longrightarrow \mathbb{Z} \\
& H^{0}(\mathcal{X}) \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \\
& H^{1}(\mathcal{X}) \longleftrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \\
& H^{2}(\mathcal{X}) \longleftrightarrow
\end{aligned}
$$

So $H^{0}(\mathcal{X})=\mathbb{Z}, H^{1}(\mathcal{X})=0, H^{2}(\mathcal{X})=\mathbb{Z}$.

In terms of counting points over \mathbb{F}_{q}, we have

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+q+q=q^{2}+1 .
$$

In terms of counting points over \mathbb{F}_{q}, we have

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right)=(q-1)^{2}+q+q=q^{2}+1
$$

A teaser for a recent paper: This is a q-Catalan number! See Galashin and Lam Positroids, knots, and (q, t)-Catalan numbers for much more.

