Introduction to Cluster Algebras

Lauren K. Williams, Harvard

Overview

- Cluster algebras are commutative rings with distinguished generators (*cluster variables*) having a remarkable combinatorial structure.
- The structure of a cluster algebra is encoded by a quiver, and the relations among the cluster variables are encoded by *quiver mutation*.
- Cluster algebras were introduced by Fomin and Zelevinsky in 2000, motivated by total positivity and Lusztig's canonical basis.

Cluster algebras have since appeared in many other contexts such as:

- Poisson geometry
- triangulations of surfaces and Teichmüller theory
- tropical geometry
- mathematical physics: wall-crossing phenomena, quiver gauge theories, scattering amplitudes, soliton solutions to the KP equation

Outline of my talks

Talk 1: What is a cluster algebra?

- Motivation from total positivity
- Quivers and quiver mutation
- Seeds and seed mutation
- Definition of cluster algebra
- Cluster algebras in nature: surfaces, Grassmannians

Talk II: Cluster structures in commutative rings

- How can we identify a commutative ring with a cluster algebra?
- Starfish lemma
- The Grassmannian, revisited
- Presentations by generators and relations?

The Grassmannian and its positive part

The Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \subset \mathbb{R}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Can think of $Gr_{k,n}(\mathbb{R})$ as $Mat_{k,n}/\sim$.

Given $I \in {[n] \choose k}$, the *Plücker coordinate* $\Delta_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The *totally positive part* of the Grassmannian $(Gr_{k,n})_{>0}$ is the subset of $Gr_{k,n}(\mathbb{R})$ where all Plucker coordinates $\Delta_I(A) > 0$.

A $k \times n$ matrix A has $\binom{n}{k}$ Plücker coordinates. How many (and which ones) do we need to test to determine whether A represents a point of $(Gr_{k,n})_{>0}$?

The Grassmannian and its positive part

Represent an element of $Gr_{k,n}(\mathbb{R})$ by a full-rank $k \times n$ matrix A.

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the *Plücker coordinate* $\Delta_I(A)$ is the minor of the $k \times k$ submatrix of A in column set I.

The Plücker coordinates satisfy

$$\Delta_{13}(A)\Delta_{24}(A) = \Delta_{12}(A)\Delta_{34}(A) + \Delta_{14}(A)\Delta_{23}(A).$$

So if $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ and Δ_{24} are positive, so is Δ_{13} . Or if $\Delta_{12}, \Delta_{23}, \Delta_{34}, \Delta_{14}$ and Δ_{13} are positive, so is Δ_{24} . How can we generalize this picture to $Gr_{2,n}(\mathbb{R})$? $Gr_{k,n}(\mathbb{R})$?

A *quiver* is a finite directed graph. Multiple edges are allowed. Oriented cycles of length 1 or 2 are forbidden. Two types of vertices: "frozen" and "mutable." Ignore edges connecting frozen vertices.

Quiver Mutation

Let k be a mutable vertex of Q.

Quiver mutation $\mu_k : Q \mapsto Q'$ is computed in 3 steps:

- 1. For each instance of $j \rightarrow k \rightarrow \ell$, introduce an edge $j \rightarrow \ell$.
- 2. Reverse the direction of all edges incident to k.
- 3. Remove oriented 2-cycles.

Mutation is an involution, i.e. $\mu_k^2(Q) = Q$ for each vertex k.

Two quivers are *mutation-equivalent* if one can get between them via a sequence of mutations. *Show aplet.*

Seeds

Let \mathcal{F} be a field of rational functions in *m* independent variables over \mathbb{C} . A *seed* in \mathcal{F} is a pair (Q, x) consisting of:

- a quiver Q on m vertices
- an *extended cluster* x, an *m*-tuple of algebraically independent (over C) elements of *F*, indexed by the vertices of *Q*.

Cluster = {cluster variables } Extended Cluster = {cluster variables, coefficient variables}

Seed mutation

Let k be a mutable vertex in Q and let x_k be the corresponding cluster variable. Then the seed mutation $\mu_k : (Q, x) \mapsto (Q', x')$ is defined by

- $Q' = \mu_k(Q)$
- $\mathbf{x}' = \mathbf{x} \cup \{x'_k\} \setminus \{x_k\}$, where

$$x_k x'_k = \prod_{j \leftarrow k} x_j + \prod_{j \rightarrow k} x_j$$
 (is the exchange relation)

Remark: Mutation is an involution.

Example

Lauren K. Williams (Harvard) Cluster Algebras, Talk 1 @ ICERM workshop

Definition of cluster algebra

Let (Q, x) be a seed in \mathcal{F} , where Q has n mutable vertices. Consider the *n*-regular tree \mathbb{T} with vertices labeled by seeds, obtained by applying all possible sequences of mutations to (Q, x). Let χ be the union of all cluster variables which appear at nodes of \mathbb{T} . Let the *ground ring* be $\mathcal{R} = \mathbb{C}[x_{n+1}, \ldots, x_m]$, the polynomial ring generated by frozen variables. (Alternatively let $\mathcal{R} = \mathbb{C}[x_{n+1}^{\pm}, \ldots, x_m^{\pm}]$.) The *cluster algebra* $\mathcal{A}(Q) := \mathcal{R}[\chi] \subset \mathcal{F}$ is the \mathcal{R} -subalg generated by χ .

Example

Consider the following seed (Q, x), where x = { x_1, x_2 }.

The cluster algebra $\mathcal{A}(Q)$ is the subring of $\mathcal{F} = \mathbb{C}(x_1, x_2)$ generated by all cluster variables $\chi = \{x_1, x_2, \frac{1+x_2}{x_1}, \frac{1+x_1+x_2}{x_1x_2}, \frac{1+x_1}{x_2}, \frac{1+x_1}{x_2}\}$

Note: every cluster variable is a Laurent polynomial in $\{x_1, x_2\}$. Note: each Laurent polynomial has positive coefficients. Note: there are finitely many cluster variables. The 2-regular tree closes up to form a pentagon.

Fundamental results

Let $\mathcal{A} = \mathcal{A}(Q)$ be an arbitrary cluster algebra, with initial seed (Q, x).

Laurent phenomenon (Fomin + Zelevinsky)

Every cluster variable is a Laurent polynomial in the variables from x (the *initial cluster variables*).

Positivity Theorem (Lee-Schiffler, Gross-Hacking-Keel)

Each such Laurent polynomial has positive coefficients.

Finite type classification (Fomin + Zelevinsky)

We say \mathcal{A} has *finite type* if there are only finitely many cluster variables. The finite type cluster algebras are classified by Dynkin diagrams. When \mathcal{A} is of finite type, the *n*-regular tree closes up on itself and becomes the 1-skeleton of a convex polytope.

Cluster algebras and triangulations

Fix a triangulation T of a d-gon. We associate to it a quiver Q_T :

This gives rise to a cluster algebra $\mathcal{A}(Q_T)$, with initial seed $(Q_T, \{x_1, \ldots, x_{2d-3}\})$.

The set of triangulations of a polygon is connected by *flips*.

Flips correspond to mutations.

Note that $\mu_2(Q_T) = Q_{T'}$.

Cluster algebras and triangulations of a polygon

Triangulations are connected by flips, and flips \leftrightarrow mutations. Moreover:

seeds \leftrightarrow the triangulations of the polygon coefficient variables \leftrightarrow the *d* sides of the polygon

cluster variables \leftrightarrow the $\frac{d(d-3)}{2}$ diagonals of the polygon Exchange relation: ℓ i $x_h x'_h = x_i x_k + x_j x_\ell$ Lauren K. Williams (Harvard) Cluster Algebras, Talk 1.0 ICERM workshop February 2021

16 / 23

Cluster algebras and triangulations of a polygon

Relabel the triangulation, and coefficient/cluster variables as follows:

This identifies our cluster algebra with the coordinate ring of the Grassmannian $\mathbb{C}[Gr_{2,d}]!$ Every cluster (triangulation) gives rise to a positivity test for membership in $(Gr_{2,d})_{>0}$. (Why?)

Cluster algebras and triangulations of a polygon

The cluster algebra associated to $\mathbb{C}[Gr_{2,d}]$ can be visualized using the *associahedron*:

Two generalizations of this cluster algebra

Recall that given a triangulation of a polygon, we can construct a quiver and an associated cluster algebra.

Idea: if we have an oriented surface with some marked points, we can triangulate it, and construct a quiver as before!

Second generalization: triangulation \rightsquigarrow plabic graph

To get positivity tests for $(Gr_{k,n})_{>0}$ for k > 2, replace *triangulations* with Postnikov's (k, n)-plabic graphs. To get polytope encoding these positivity tests for $(Gr_{k,n})_{>0}$, replace

associahedron with higher associahedra (Galashin-Postnikov-W.)

BREAK

References

References

- Fomin and Zelevinsky, Cluster algebras I: Foundations, *Journal of the AMS* 15 (2002), 497–529.
- Fomin and Zelevinsky, Y-systems and generalized associahedra, *Annals of Mathematics* 158 (2003), 977–1018.
- Fomin and Zelevinsky, Cluster algebras II: Finite type classification, *Inventiones Mathematicae* 154 (2003), 63–121.
- Williams, Cluster algebras: an introduction, *Bulletin of the AMS* 51 (2014), 1–26.
- Fomin, Williams, and Zelevinsky, Introduction to Cluster Algebras, book in progress, arXiv:1608.05735, arXiv:1707.07190, arXiv:2008.09189.