Moduli Spaces of Trupical Cunves ICERM Buotcamp Febrwany 4, 2021

Sam Pague (UT Austin)

Recall: $M_{g}=$ algebraic variet (scheme, Stale)
$(g \geq 2) M_{g}(k)=\{$ sinooth prigective k-cenves fogers $g\} / \cong$

$$
\operatorname{Mg}(\mathbb{L})=\mathrm{Jg}_{g} / \operatorname{Mod}\left(S_{g}\right)
$$

TeichmiullerSpace Mapping Classqoup = hyperholic matuis a S_{δ}

$$
H^{\alpha}\left(\mu_{\mathrm{g}}(\mathbb{C})\right)
$$

From This maviey (M. Branat)
$K=$ algebraically clcsed volued field.
$R C K$ valuation ving, $M=$ residue field.
Eachi $X \in M_{g}(K)$ has a unigue steeble model
$x \quad x_{k}=x$ and $\omega_{x}=($ vel.) ample.
SpecR \sim abstract tropical ane
$G=$ dual gaph of $X_{k}\left\{\begin{array}{l}V(G)=\text { ivreducible cemponents } \\ E(G)=\text { nodes }\end{array}\right.$
$l: E(G) \rightarrow \mathbb{R}_{>0}$ "Thidknees of nodo"
tridcuess of $(x y-f=0):=\operatorname{val}(f)$

Ex: $\quad g=2$

Note : Ampleness of ω_{x} depends only an G

- W_{x} ample \Leftrightarrow every vertex of genius O has valence of least 3
- Only finitely many such stable epapls fr each g.

Def: $M_{y}^{\text {true }}=\{$ stable tropical curves of genus $g\} / \cong$

Note: $M_{y}^{\text {top }}=$ Core over $\Delta_{g}:=\left\{(G, l): \sum_{e} l(c)=1\right\}$.
Example: $g=2$

Mavked Points: Fixg,n ≥ 0 such that $2 g-2+n>0$.
$M_{g, n}(K)=\{s m \cdot p r y . k$-cinvis of genves $g w /\} / \cong$ n distinct morked pls

$$
\left(x_{j}, p_{1}, \ldots, p_{n}\right)
$$

Note: $2 g-2+n>0 \Longleftrightarrow \omega_{x}\left(p_{1}+\cdots+p_{n}\right)$ ample.
Stable reduction:
($X, p,, \ldots, p_{n}$) hes a unique stable model

$$
\begin{aligned}
& (x, \underbrace{\sigma_{1}}_{\left.1, \ldots, \sigma_{n}\right)} \cdot x_{k}=X \text { and } \sigma_{i}=\overline{P_{i}} \\
& \text { disjoint sections of } x^{\text {sm }} \cdot \omega_{x}\left(\sigma_{1}+\cdots+\sigma_{n}\right)=(\text { rel) ample }
\end{aligned}
$$

Dual graph of ${H_{k}}_{k}=$ stable n-marked tropical cure

$$
E x: g=1, n=2
$$

Stable: each vertex of genus 0 has valonce ≥ 3
Note: finitely many dual graphs for each g, n.
$M_{\text {gin }}^{\text {trip }}=\left\{\begin{array}{c}\text { stable } n \text {-marked topical coirs }\} \\ \text { of genus } g ~\end{array}\right.$

$$
=\text { cone dover } \Delta_{g y} n:=\left\{(G, l)=\sum_{e} l(e)=1\right\}
$$

Example: $g=1, n=2$

$A_{\text {map }} \lambda: M_{g}(\mathbb{C}) \rightarrow M_{g}^{\text {trap }} \quad\left(\right.$ recall $\left.M_{g}(\mathbb{C})=T_{g} / M_{\text {ce d }}\left(S_{g}\right)\right)$
$X \in T_{g}$ hyperbolic metric
Fix small $\varepsilon>0$.

Let $G=$ dual graph of nodal surface obtained by contracting all closed geodesics of length $<\varepsilon$.
$e \in E(G) \quad \longleftrightarrow$ geodesic of lent $a_{e}<\varepsilon$
$l(e):=-\log \left(a_{e} / \varepsilon\right)$.

$$
\lambda: X \longmapsto(G, l)
$$

Observation $=\lambda$ is proper and have induces

$$
\lambda^{\alpha}=H_{c}^{\alpha}\left(M_{g}^{+{ }^{\prime o} p}\right) \rightarrow H_{c}^{*}\left(M_{g}(\mathbb{C})\right)
$$

Tum (via Deligne's MHS): $\lambda_{\mathbb{Q}}^{*}$ is infective

Equivalenty (ria Poincoré duality)

$$
H^{6 g-6-k}\left(\mu_{g} ; Q\right) \rightarrow \tilde{H}_{k-1}\left(\Delta_{g} ; \mathbb{Q}\right)
$$

$$
\longrightarrow
$$

