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Peterson isomorphism in homology
G : semi-simple, simply connected algebraic group over C

⇝ G [[z ]] := G (C[[z ]]) ⊂ G ((z)) := G (C((z)))
T ⊂ B : maximal torus of G ⊂ maximal solvable subgroup of G
⇝ X := G/B: flag variety, GrG := G ((z))/G [[z ]]: affine Grassmannian

Theorem (Peterson 1997, Lam-Shimozono 2010)

We have an isomorphism of based algebras (up to localizations on the both sides)

qH•
T (X )loc ∼= HT

• (GrG )loc (♢).

1 The LHS is known to be described by (finite) Toda lattice (Givental, Kim);
2 The RHS is known to be described in Lie theoretic terms (Ginzburg);
3 Kostant described finite Toda lattice in terms of Lie algebras.

These three works were earlier (1995, ∼mid 1990s, 1970s), and hence the deepest
insight of Peterson lie on the identification of bases

and the Peterson variety that we do not explain today.
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Peterson isomorphism in homology

Theorem (Peterson 1997, Lam-Shimozono 2010)

We have an isomorphism of based algebras (up to localizations on the both sides)

qH•
T (X )loc ∼= HT

• (GrG )loc (♢).

The deepest aspect of the insight of Peterson lie on the identification of bases.

1 The only proof of (♢) (with the presence of Schubert basis) known today is to
apply Mihalcea’s Chevalley type formula (2007);

2 There are several explainations of (♢) including these from symplectic
homology, but they are not enough to explain the coincidence of the bases.

The goal of this talk is to give a proof of the K -theoretic analogue of (♢).

As far as I know, this gives the first explanation as to why the Schubert bases
correspond each other (through the whole business of this type),
in the sense that the identification comes before knowing precise numerical formulas.
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Lam-Li-Mihalcea-Shimozono’s conjecture

Conjecture (Lam-Li-Mihalcea-Shimozono 2018)

We have an isomorphism of based algebras (up to localizations on the both sides)

qKT (X )loc ∼= KT (GrG )loc (♠′),

where qKT (X ) is the quantum K -group in the sense of Givental-Lee.

Let N := [B,B]. We have defined the semi-infinite flag manifolds as:

Qrat := G ((z))/T · N((z))

We have the notion of equivariant K -group KT×Gm(Qrat).

Theorem (“Trinity in affine Schubert calculus")

We have an isomorphism of based algebras (up to localizations on the both sides)

KT (Qrat)

KT (GrG )loc //
* 


Φ

88

qKT (X )loc

3 S

Ψ

ff
(♠).
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Correspondence between labels

Waf = W ⋉ Q∨ : affine and finite Weyl group, and the coroot lattice of G
Q∨

+ ,Q
∨
≤ : Z≥-span of +-coroots, antidominant coroots (Q∨

+ ∩ Q∨
≤ = {0})

I ⊂ G [[z ]] : the Iwahori subgroup of G [[z ]]

1 qKT (X )
.
= KT (X )⊗ CQ∨

+ and B\X ↔W . It follows that

qKT (X )
.
=

⊕
w∈W ,β∈Q∨

+

C[T ][Ow ]Qβ ;

2 I\GrG ∼W × Q∨
≤. It follows that

KT (GrG ) =
∑

w∈W ,β∈Q∨
≤

C[T ][OGr
(w ,β)] almost direct sum;

3 I\Qrat ↔Waf . It follows that

KT×Gm(Q
rat)

.
=

⊕
v∈Waf

C[T ×Gm][Ov ].

Here we intentionally neglected completions for the sake of simplicity.
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Correspondence between labels

1 qKT (X )
.
= KT (X )⊗ CQ∨

+ and B\X ↔W . It follows that

qKT (X )
.
=

⊕
w∈W ,β∈Q∨

+

C[T ][Ow ]Qβ Q∨
+ ∩ Q∨

≤ = {0}.

2 I\GrG ∼W × Q∨
<. It follows that

KT (GrG ) =
∑

w∈W ,β∈Q∨
<

C[T ][OGr
(w ,β)] almost direct sum

3 I\Qrat ↔Waf . It follows that

KT×Gm(Q
rat)

.
=

⊕
v∈Waf

C[T ×Gm][Ov ].

In particular, if we enlarge Q∨
+ ⊂ Q∨ and Q∨

≤ ⊂ Q∨ in the first two items via
localization, then we find C[T ]-module (but not yet ring) “isomorphisms"

qKT (X )loc
.
= KT (Qrat)

.
= KT (GrG )loc.
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Localization of KT (GrG )

The product structure of KT (GrG ) is via the convolution product ⊙, defined
through the diagram

Gr×Gr← G ((z))×Gr→ G ((z))×I Gr mult−→ Gr

Lemma (folklore, K)

For β1, β2 ∈ Q∨
− and w ∈W , we have [OGr

(w ,β1)
]⊙ [OGr

(e,β2)
] = [OGr

(w ,β1+β2)
].

Corollary

For β ∈ Q∨
≤, the ⊙-action of the [OGr

(e,β)] on KT (GrG ) is free. Adjoining their
inverses yields KT (GrG )loc whose basis is indexed by Waf through

Waf ∋ (w , β)↔ [OGr
(w ,β1)

]⊙ [OGr
(e,β2)

]−1 β = β1 − β2.

In particular, the RHS does not depend on the choice of β1, β2.
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The group KT×Gm
(Qrat) – recollections

We have

KT×Gm(Q
rat) ⊂ {

∑
w∈Waf

aw [Ow ] | aw ∈ C((q−1))[T ], aw ̸= 0 only if w ≫∞
2
−∞},

where q is degree one Gm-character, and ≥∞
2

is the closure ordering of I-orbits.

▶ G ((z))-equivariant line bundles on Qrat are of the shape O(λ) (λ ∈ P), and
each of them admits the G ((z))⋉C×-action, where C× is the loop rotation;

▶ Each C ∈ KT×Gm(Qrat) defines a C((q−1))[T ]-linear functional

P ∋ λ 7→ χT×Gm(Q
rat,C ⊗O O(λ)) ∈ C((q−1))[T ]

modulo negligible elements;
▶ The translation [Ow ] 7→ [Ow(e,β)] (β ∈ Q∨ ⊂Waf) induces KT×Gm(Qrat) the

right C[[Q∨]]-module structure that further induces the right action of

C((Q∨)) := C[Q∨]⊗C[Q∨
+ ] C[[Q∨]];

▶ If we expand [Ow (λ)] =
∑

v av (λ)[Ov ], then av (λ) ∈ C[T ×Gm];
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The group KT×Gm
(Qrat) – implications

We have

KT×Gm(Q
rat) ⊂ {

∑
w∈Waf

aw [Ow ] | aw ∈ C((q−1))[T ], aw ̸= 0 only if w ≫∞
2
−∞},

where q is degree one Gm-character, and ≥∞
2

is the closure ordering of I-orbits.

▶ Element of KT×Gm(Qrat) is formal C((q−1))[T ]-linear combination of [Ow ]

▶ Topology of KT×Gm(Qrat) is given by Span{[O(u,β)]}u∈W ,β≥γ (γ ∈ Q∨);

Define subset K ′
T×Gm

(Qrat) ⊂ KT×Gm(Qrat) s.t. aw ∈ C[T ×Gm].

▶ We have [O(λ)]⊗ ⟳ K ′
T×Gm

(Qrat) for λ ∈ P;
▶ The right C((Q∨))-action also descends to K ′

T×Gm
(Qrat).

⇝ The q = 1 specialization KT (Qrat) of K ′
T×Gm

(Qrat) admits line bundle tensor
product and translation actions.
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Remarks on T -equivariant K -group of Qrat

We have

KT (Qrat) ⊂ {
∑

w∈Waf

aw [Ow ] | aw ∈ C[T ], aw ̸= 0 only if w ≫∞
2
−∞},

on which line bundle tensor product and translation action exists.

▶ We have [OQrat ] ̸∈ KT (Qrat) since Qrat is not a Schubert variety of Qrat

⇐ Each I-orbit in Qrat has ∞-codim (as well as ∞-dim);
▶ In particular, [O(λ)]⊗ ⟳ KT (Qrat) is not multiplication in KT (Qrat);
▶ If we restrict to KT (Q(e)), then [O(λ)]⊗ ≡ [OQ(e)(λ)]⊗, and it is indeed

realized as multiplication of KT (Q(e)) ⇐ Q(e) is a scheme.

Back to GrG , we have indeed the same problem. In particular, the product ⊙ on
H•(GrG ) a priori has nothing to do with the multiplication in cohomology.

This point was obscured since H•(GrG ) is indeed the enveloping algebra of a
commutative Lie algebra (Ginzburg, cf. Yun-Zhu).
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A tiny example – tensoring with O(ϖ)

When G = SL(2), we have

Q(e) = P(C2[[z ]]) =
∪

w∈S2,m≥0

Q(w ,mα∨),

where (w ,mα∨) ∈Waf . We have

H i (Q(w ,mα∨),O(lϖ)) ∼=

{
S l

(
C1+δw,e ξm ⊕ C2[ξ]ξm+1

)
(i = 0, l ≥ 0)

{0} (else)

where ξ (or ξm) is the formal variable dual to z (or zm). We have

chT H0(Q(e),O(ϖ)) ∼= chT C2[ξ] =∞(eϖ + e−ϖ).

Nevertheless, we can interpret as

[O(ϖ)]⊗ [OQ(e)] =
∑

w∈S2,m≥0

q−me−wϖ[OQ(w ,mα∨)] ∈ KT×Gm(Q
rat)

by examining the (T ×Gm)-characters.
▶ The sum here is infinite ⇝ [O(ϖ)]⊗ needs completion to be well-defined.
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Another tiny example – tensoring with O(−ϖ)

When G = SL(2), we have

Q(e) = P(C2[[z ]]) =
∪

w∈S2,m≥0

Q(w ,mα∨) ∼= P∞,

where (w ,mα∨) ∈Waf . Thus, we have finite expressions

[O(−ϖ)]⊗ [OQ(e,mα∨)] = eϖ([OQ(e,mα∨)]− [OQ(s,mα∨)])

[O(−ϖ)]⊗ [OQ(s,mα∨)] = e−ϖ([OQ(e,mα∨)]− q−1[OQ(e,(m+1)α∨)]),

where the second term is the (unique) codimension one orbit. Thus, [O(−ϖ)]⊗
makes sense on KT×Gm(Qrat) without completion.

▶ The above formula (q = 1) coincides the multiplication rule of qKT (X )loc
and KT (GrG )loc (with respect to their Schubert basis);

▶ The action [O(−ϖ)]⊗ corresponds to [OX (−ϖ)]⋆ in qKT (X )loc. We have

([O(−ϖ)]⋆)−1 ̸= [OX (ϖ)]⋆,

and the former action on qKT (X ) is infinite (the latter is finite)
⇝ it does not act on the polynomial version KT (X )⊗ C[Q∨

+] ⊂ qKT (X ).
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Inclusion KT (GrG )loc ⊂ KT (Qrat)

For each simple root α of G ((z)), we have I ⊂ I(α) ⊂ G ((z)) s.t.

I(α)/I ∼= P1 (minimal parabolic).

The multiplication induces morphisms

I(α)×I GrG → GrG I(α)×I Qrat → Qrat,

that induces an action of (level zero) nil-DAHA HHnil on KT (GrG ) and KT (Qrat).

Proposition (Kostant-Kumar, K)

1 HHnil ⟳ KT (GrG ) extends to KT (GrG )loc, and commutes with ⊙[OGr
(e,β)]

±1;

2 HHnil ⟳ KT (Qrat) commutes with the twist of I-orbit labels by Q∨ ⊂Waf .

The above two HHnil ⊗ CQ∨-modules are cyclic. In addition, [OGr
(w ,β)] 7→ [O(w ,β)]

extends to an embedding KT (GrG )loc ⊂ KT (Qrat) as modules.

We can write down the line bundle twist of KT (Qrat) in terms of the ⊙-action on
KT (GrG )loc. The formula is pretty simple for primitive anti-nef line bundles (p12).
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Quantum K -group
The quantum K -group qKT (X ) is a vector space KT (X )⊗ C[[Q∨]] equipped with
a linear functional

qKT (X )⊗3 ∋ (a, b, c) 7→ ⟨a, b, c⟩GW =
∑
β∈Q∨

+

Qβ ⟨a, b, c⟩βGW ∈ C[T ][[Q∨
+]]

with the following properties:
1 β ∈ Q∨

+ ⊂ H2(X ,Z) is understood to be a class of algebraic curves on X ;
2 Qβ (β ∈ Q∨

+) is a formal invariant and hence the functional is linear with
respect to the C[[Q∨

+]]-actions;
3 ⟨a, b, c⟩GW is symmetric with respect to the S3-permutation.

The quantum K -product ⋆ is defined through

⟨a ⋆ b, c , [OX ]⊗ 1⟩GW = ⟨a, b, c⟩GW a, b, c ∈ qKT (X ).

Theorem (Givental, Lee)

The binary operation ⋆ defines qKT (X ) with a commutative and associative
algebra structure with 1 = [OX ] ≡ [OX ]⊗ 1.
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Three-point invariants

For each β ∈ Q∨
+ , there exists a space Xβ,3 whose points parametrizes:

1 a connected curve C with genus zero with three distinct points p1, p2, p3 ∈ C ;
2 the singularity of C is mild, and p1, p2, p3 are not singular points of C ;
3 f : C → X define f∗[C ] = β ∈ H2(X ,Z);
4 the automorphism group of the data (C , p1, p2, p3, f ) is finite.

Theorem (Fulton-Phandharipande)

The variety Xβ,3 (and Xβ,k defined later) exists, and it is a proper normal
algebraic variety with quotient singularities (smooth viewed as an algebraic stack).

Assignment (C , p1, p2, p3, f ) 7→ f (pi ) ∈ X ⇝ evi : Xβ,3 → X (i = 1, 2, 3).

For a, b, c ∈ KT (X ), we define

⟨a, b, c⟩βGW := χT (Xβ,3, ev
∗
1a⊗ ev∗2b ⊗ ev∗3c) ∈ C[T ] ⊂ C[T ][[Q∨

+]].

We extend ⟨•, •, •⟩βGW to qKT (X ) by the C[[Q∨
+]]-linearity.
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Kollar’s vanishing theorem

The Euler-Poincaré characteristics on Xβ,3 is not necessarily easy to compute. For
example, we have

dim (Xβ,3)
T →∞ as β →∞.

Theorem (Kollar)

Let f : Y→ X be a proper morphism such that Y,X has rational singularities and
the general fiber F of f satisfies H i (F ,OF ) ∼= Cδi0 . Then, for each locally free
sheaf M on X, we have

H•(X,M) = H•(Y, f ∗M).

⇝ replace Xβ,3 with other varieties with rational singularities (connected by
proper morphisms in two steps) to compute the Euler-Poincaré characteristics of
some specific sheaves.
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Graph spaces

For each β ∈ Q∨
+ , there exists a space Xβ,k (k = 0, 1, 2 . . .) whose points

parametrizes:
1 a connected curve C with genus zero with k distinct points p1, . . . , pk ∈ C ;
2 the singularity of C is mild, and p1, . . . , pk are not singular points of C ;
3 f : C → P1 × X define f∗[C ] = (1, β) ∈ H2(P1 × X ,Z) = Z⊕ H2(X ,Z);
4 the automorphism group of the data (C , p1, . . . , pk , f ) is finite.

Forgetting points or P1 yields maps

Xβ,0
π←− Xβ,3

ψ−→ Xβ,3

Since the general fiber of ψ is P3, Kollar’s theorem yields

⟨a, b, c⟩βGW = χT (Xβ,3, ev
∗
1a⊗ ev∗2b ⊗ ev∗3c) ∈ C[T ] ⊂ C[T ][[Q∨

+]].

Moreover, we may have the extra Gm-action acting on the first component of
P1 × X , that yields a q-deformation ⟨a, b, c⟩qGW of ⟨a, b, c⟩GW.
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Evaluations on graph spaces

For each β ∈ Q∨
+ , there exists a space Xβ,k (k = 0, 1, 2 . . .) whose points

parametrizes:
▶ f : C → P1 × X define f∗[C ] = (1, β) ∈ H2(P1 × X ,Z) = Z⊕ H2(X ,Z).

We have

⟨a, b, c⟩β,qGW = χT×Gm(Xβ,3, ev
∗
1a⊗ ev∗2b ⊗ ev∗3c) ∈ C[T ×Gm].

If we examine the definition, then we find a, b, c ∈ KT×Gm(P1 × X ). We may take
a, b, c ∈ KT (X ), and promote to KT×Gm(P1 × X ) by

a := [C0]⊠ a, b := [C∞]⊠ b, c := [OP1 ]⊠ c (BASIC notation).

This is the same as restricting to X♭β,k ⊂ Xβ,k such that p1 7→ 0, p2 7→ ∞ in P1.
Buch-Chaput-Mihalcea-Perrin says that X♭β,k has rational singularities, and hence
the (equivariant) Euler-Poincaré characteristic does not change by this procedure.
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Quasi-map spaces

For (C , p1, . . . , pk , f ) ∈ Xβ,k , we have a specific irreducible component P1 ⊂ C
that maps isomorphically to the first component of P1 × X using degree (1, β).

Identifying different choices of p1, . . . , pk and f |C\P1 , we obtain a set Q(β). This is
a topological compactification of space of holomorphic maps P1 → X of degree β.

Theorem (Givental’s main lemma; LLY, FFKM, DP)

The space Q(β) is an algebraic variety and the map Xβ,0 → Q(β) is a map of
algebraic varieties.

Theorem (K)

We have an identification Q(β) ∼= Q(0, β) ⊂ Qrat. In addition,
Q :=

∪
β∈Q∨

+
Q(β) is Zariski dense in an I-orbit closure Q(e) ⊂ Qrat.

⇝ Each λ defines a line bundle on Q(β) and Xβ,k that we denote by O(λ).

(λ ∈ P, with P the set of weights of T )
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Shift operators for line bundles

Theorem (Iritani-Milanov-Tonita)

For λ ∈ P, there is an endomorphism Aλ(q) of C((q−1))⊗ qKT (X ) such that⟨
a,Aλ(q)b, [OX ]

⟩q,β
GW = χT×Gm(X

♭
β,2, ev

∗
1a⊗ ev∗2b ⊗O(λ))

for every β ∈ Q∨
+ and a, b ∈ qKT (X ). In addition, Aλ(1) is the multiplication of

an element of qKT (X ).

This theorem requires the localization theorem, applied to the Gm-action on Xβ,k .

Observation (easy by looking at the classical limit)

The elements Aλ(1) ∈ qKT (X ) (λ ∈ P), generate qKT (X ) as C[T ][[Q∨
+]]-algebra.

⇝ If we know the relations satisfied by {Aλ(1)}λ, then we know the ring qKT (X ).
But we proceed slightly different way.

20 / 30



Inclusion qKT (X ) ↪→ KT (Qrat)

Theorem (K)

There exists an injective C[T ]-algebra map Ψ : qKT (X ) ↪→ KT (Qrat) with the
following properties:

1 We have Ψ(Aλ(1)•) = [O(λ)]⊗Ψ(•) for each λ ∈ P.
2 It sends [Ow ]Qβ to [O(w ,β)] for w ∈W , β ∈ Q∨

+ .

Corollary

We have an isomorphism of based algebras (up to localizations on the both sides)

KT (Qrat)

KT (GrG )loc //
* 


Φ

88

qKT (X )loc

3 S

Ψ

ff
(♠).

This also equips KT (Qrat) with the structure of an algebra with 1 = [Oe ].
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Remarks on the triangle (♠)

Corollary

We have an isomorphism of based algebras (up to localizations on the both sides)

KT (Qrat)

(KT (GrG )loc,⊙) //
) 	

Φ

77

(qKT (X )loc, ⋆)
4 T

Ψ

gg
(♠).

This also equips KT (Qrat) with the structure of an algebra with 1 = [Oe ].

▶ The diagram as based C[T ][Q∨]-modules is already explained;
▶ The effect of e−ϖi [O(−ϖi )]⊗ on KT (Qrat) yields

(1− [OGr
(si ,β)

][OGr
(e,β)]

−1)⊙ on KT (GrG )loc, and (1− [Os
i ]) ⋆ on qKT (X )

This identifies the multiplications of [OGr
(si ,β)

][OGr
(e,β)]

−1 and [Osi ].
▶ A consequence of (♠) is the finiteness of ⋆;
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Remarks on the triangle (♠)

Corollary

We have an isomorphism of based algebras (up to localizations on the both sides)

KT (Qrat)

(KT (GrG )loc,⊙) //
) 	

Φ

77

(qKT (X )loc, ⋆)
4 T

Ψ

gg
(♠).

This also equips KT (Qrat) with the structure of an algebra with 1 = [Oe ].

▶ A consequence of (♠) is the finiteness of ⋆, i.e. ⋆-product of two Schubert
cells are finite linear combination of Schubert cells;

▶ In particular, if [OQ(e)(λ)] (λ ∈ P) is the finite sum with respect to the
Schubert classes, then Aλ(q) is finite. This happen precisely if −λ ∈ P+;

▶ Therefore, the quantum multiplication [O(−ϖi )]⋆ has inverse in qKT (X ),
but not in the polynomial version KT (X )⊗ CQ∨

+ ⊂ qKT (X ) (P12);
▶ ([O(−ϖi )]⋆)

−1 corresponds to [O(ϖi )]⊗ on KT (Qrat), that is essential in
the construction of Ψ. ⇝ our versions of KT (Qrat) and qKT (X ) are good
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Construction of the map Ψ : qKT (X ) ↪→ KT (Qrat)

We compare a bit precise Gm-equivariant version (i.e. q alive). We have
presentations (as modules)

qKT×Gm(X ) = C[T ×Gm][A
λ(q);λ ∈ P][[Q∨]]/ ∼

KT×Gm(Q
rat)

.
= C[T ×Gm][[O(λ)]⊗;λ ∈ P]((Q∨))/ ∼,

where the generators are [OX ] ∈ qKT×Gm(X ), [Oe ] ∈ KT×Gm(Qrat), and ∼
represents modding out the defining relations.

Warning: we pretend the generators are commutative, but in fact it is not
(the non-commutativity is mild and does not harm the logic).

Assume that (
∑
λ,β aλ,βA

λ(q)Qβ)1 = 0 in qKT×Gm(X ) with aλ,β ∈ C[T ×Gm].
We have ⟨

(
∑
λ,β

aλA
λ(q)Qβ)[OX ], [OX ], [OX ]

⟩q

GW

≡ 0.
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Map Ψ : qKT (X ) ↪→ KT (Qrat), cont’d
We compare a bit precise Gm-equivariant version (i.e. q alive). We have
presentations (as modules)

qKT×Gm(X )
.
= C[T ×Gm][A

λ(q);λ ∈ P][[Q∨]]/ ∼
KT×Gm(Q

rat)
.
= C[T ×Gm][[O(λ)]⊗;λ ∈ P]((Q∨))/ ∼ .

Assume that (
∑
λ,β aλ,βA

λ(q)Qβ)1 = 0 in qKT×Gm(X ) with aλ,β ∈ C[T ×Gm].
We have ⟨

(
∑
λ,β

aλ,βA
λ(q)Qβ)[OX ], [OX ], [OX ]

⟩q

GW

≡ 0.

expanding this yields

0 =
∑
λ,β,γ

aλ,βq
−⟨λ,β⟩Qβ+γχT×Gm(Xγ,3,O(λ)⊗

3⊗
i=1

ev∗i [OX ])

=
∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Xγ,0,O(λ)) =

∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Q(γ),O(λ)),

where the last equality requires Q(β) to have rational singularities.
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Map Ψ : qKT (X ) ↪→ KT (Qrat), cont’d
We compare a bit precise Gm-equivariant version (i.e. q alive). We have
presentations (as modules)

qKT×Gm(X )
.
= C[T ×Gm][A

λ(q);λ ∈ P][[Q∨]]/ ∼
KT×Gm(Q

rat)
.
= C[T ×Gm][[O(λ)]⊗;λ ∈ P]((Q∨))/ ∼ .

0 =
∑
λ,β,γ

aλ,βq
−⟨λ,β⟩Qβ+γχT×Gm(Xγ,3,O(λ)⊗

3⊗
i=1

ev∗i [OX ])

=
∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Xγ,0,O(λ)) =

∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Q(γ),O(λ)),

where the last equality requires Q(β) to have rational singularities.

If we have (
∑
λ,β aλ,βA

λ(q)Qβ)1 = 0, then we have (
∑
λ,β aλ,βA

λ+µ(q)Qβ)1 = 0
for every µ ∈ P. In particular, the above equality yields

0 =
∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Q(γ),O(λ)) µ ∈ P+,

where the restriction P+ ⊂ P indicates that we are interested in non-negligible
change as linear functionals.
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Map Ψ : qKT (X ) ↪→ KT (Qrat), cont’d

We compare a bit precise Gm-equivariant version (i.e. q alive). We have
presentations (as modules)

qKT×Gm(X )
.
= C[T ×Gm][A

λ(q);λ ∈ P][[Q∨]]/ ∼
KT×Gm(Q

rat)
.
= C[T ×Gm][[O(λ)]⊗;λ ∈ P]((Q∨))/ ∼ .

0 =
∑
λ,β,γ

aλ,βq
−⟨λ,β⟩Qβ+γχT×Gm(Xγ,3,O(λ)⊗

3⊗
i=1

ev∗i [OX ])

=
∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Xγ,0,O(λ)) =

∑
λ,β,γ

aλ,βq
•Qβ+γχT×Gm(Q(γ),O(λ)),

where the last equality requires Q(β) to have rational singularities.

The coefficient of Qκ for κ→∞ yields an identity

0 =
∑

λ∈P,β∈Q∨
+

aλ,βχT×Gm(Q(β),O(λ+ µ)) ∀µ ∈ P+.

This implies
∑
λ,β aλ,β[O(e,β)(λ)] = 0 ∈ KT×Gm(Qrat). ⇝ Ψ is well-defined.
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Inclusion qKT (X ) ↪→ KT (Qrat), cont’d

Theorem (K)

There exists an injective C[T ]-algebra map Ψ : qKT (X ) ↪→ KT (Qrat) with the
following properties:

1 We have Ψ(Aλ(1)•) = [O(λ)]⊗Ψ(•) for each λ ∈ P.
2 It sends [Ow ]Qβ to [O(w ,β)] for w ∈W , β ∈ Q∨

+ .

Once we know Ψ is well-defined, then the size comparison forces it to be an
injection.

In order to show the preservation of the bases, the above arguments tell us that
we only need to show

χT×Gm(X
♭
β,1,O(λ)⊗ ev∗1[Ow ]) = χT×Gm(Q(β) ∩Q(w),O(λ))

since the β →∞ in RHS yields χT×Gm(Q(w),O(λ)). This follows if

▶ Q(β) ∩Q(w) has rational singularities.

In our previous talk, we asserted that it is at least normal.
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A proof of the rationality of singularities
We have two proofs (this one works in general, and another have some restriction).

Theorem (K)

There exists a finite stratification of Q(β) ∩Q(w) such that each stratum have a
local transversal slice (i.e. product decomposition of local rings), along Q(β).

If each of these transversal slices turned out to have rational singularities, then the
non-rational singularities on that stratum extends to Q(β), that is a contradiction.

The local slice for Q(β − γ) ⊂ Q(β) is constructed as follows: Use G -action to
restrict to the locus where the map at ∞ ∈ P1 is defined and lands on a particular
point on P1. Such subspaces yields an inclusion Z(β − γ) ⊂ Z(β) of the based
map spaces (a.k.a) Zastava spaces. It satisfies the factorization property:

Theorem (Finkelberg-Mirković, Braverman-Finkelberg-Gaitsgory-Mirković)

There exists a map πβ : Z(β)→ A2|β| such that the pullback of some open
subset of A2|β| decomposes into the product of open subsets of Z(β − γ)×Z(γ).

Using the factorization map (and its twists), we can construct (many) local
transversal slices of Z(β − γ) ⊂ Z(β) that are enough to cover each stratum.
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Remarks

1 Our considerations asserts that the q-shift operator A−ϖi (q) is (also) finite,
that was one of the key ingredients in the proof of the finiteness of qK (G/P)
proved by Anderson-Chen-Tseng-Iritani;

2 Our results also describe the parabolic version of the Peterson isomorphism,
that is very simple though little strange (arXiv:1906.09343);

3 It resolves the Finkelberg-Tsymbaliuk’s conjecture about the relationship
between KG (GrG ) and KL(GrL), where L ⊂ G is Levi (arXiv:2008.01310);

4 Our K -theoretic version of the Peterson isomorphism still not succeeded to
recover the homology version. One reason: Hodd(Q(β),C) is large.

Final Remark

We hope to expand the triangle (♠) by throwing in related concepts from
geometry, representation theory, and number theory, as well as polishing each item.

Any suggestions/comments are welcome, and

Thank you very much for your attention!
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